|
@@ -30,77 +30,30 @@
|
|
static DNNReturnType set_input_output_native(void *model, DNNInputData *input, const char *input_name, const char **output_names, uint32_t nb_output)
|
|
static DNNReturnType set_input_output_native(void *model, DNNInputData *input, const char *input_name, const char **output_names, uint32_t nb_output)
|
|
{
|
|
{
|
|
ConvolutionalNetwork *network = (ConvolutionalNetwork *)model;
|
|
ConvolutionalNetwork *network = (ConvolutionalNetwork *)model;
|
|
- InputParams *input_params;
|
|
|
|
- ConvolutionalParams *conv_params;
|
|
|
|
- DepthToSpaceParams *depth_to_space_params;
|
|
|
|
- LayerPadParams *pad_params;
|
|
|
|
- int cur_width, cur_height, cur_channels;
|
|
|
|
- int32_t layer;
|
|
|
|
|
|
|
|
- if (network->layers_num <= 0 || network->layers[0].type != INPUT){
|
|
|
|
|
|
+ if (network->layers_num <= 0 || network->operands_num <= 0)
|
|
return DNN_ERROR;
|
|
return DNN_ERROR;
|
|
- }
|
|
|
|
- else{
|
|
|
|
- input_params = (InputParams *)network->layers[0].params;
|
|
|
|
- input_params->width = cur_width = input->width;
|
|
|
|
- input_params->height = cur_height = input->height;
|
|
|
|
- input_params->channels = cur_channels = input->channels;
|
|
|
|
- if (input->data){
|
|
|
|
- av_freep(&input->data);
|
|
|
|
- }
|
|
|
|
- av_assert0(input->dt == DNN_FLOAT);
|
|
|
|
- network->layers[0].output = input->data = av_malloc(cur_height * cur_width * cur_channels * sizeof(float));
|
|
|
|
- if (!network->layers[0].output){
|
|
|
|
- return DNN_ERROR;
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- for (layer = 1; layer < network->layers_num; ++layer){
|
|
|
|
- switch (network->layers[layer].type){
|
|
|
|
- case CONV:
|
|
|
|
- conv_params = (ConvolutionalParams *)network->layers[layer].params;
|
|
|
|
- if (conv_params->input_num != cur_channels){
|
|
|
|
- return DNN_ERROR;
|
|
|
|
- }
|
|
|
|
- cur_channels = conv_params->output_num;
|
|
|
|
-
|
|
|
|
- if (conv_params->padding_method == VALID) {
|
|
|
|
- int pad_size = (conv_params->kernel_size - 1) * conv_params->dilation;
|
|
|
|
- cur_height -= pad_size;
|
|
|
|
- cur_width -= pad_size;
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
- case DEPTH_TO_SPACE:
|
|
|
|
- depth_to_space_params = (DepthToSpaceParams *)network->layers[layer].params;
|
|
|
|
- if (cur_channels % (depth_to_space_params->block_size * depth_to_space_params->block_size) != 0){
|
|
|
|
- return DNN_ERROR;
|
|
|
|
- }
|
|
|
|
- cur_channels = cur_channels / (depth_to_space_params->block_size * depth_to_space_params->block_size);
|
|
|
|
- cur_height *= depth_to_space_params->block_size;
|
|
|
|
- cur_width *= depth_to_space_params->block_size;
|
|
|
|
- break;
|
|
|
|
- case MIRROR_PAD:
|
|
|
|
- pad_params = (LayerPadParams *)network->layers[layer].params;
|
|
|
|
- cur_height = cur_height + pad_params->paddings[1][0] + pad_params->paddings[1][1];
|
|
|
|
- cur_width = cur_width + pad_params->paddings[2][0] + pad_params->paddings[2][1];
|
|
|
|
- cur_channels = cur_channels + pad_params->paddings[3][0] + pad_params->paddings[3][1];
|
|
|
|
- break;
|
|
|
|
- default:
|
|
|
|
- return DNN_ERROR;
|
|
|
|
- }
|
|
|
|
- if (network->layers[layer].output){
|
|
|
|
- av_freep(&network->layers[layer].output);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- if (cur_height <= 0 || cur_width <= 0)
|
|
|
|
- return DNN_ERROR;
|
|
|
|
|
|
|
|
- network->layers[layer].output = av_malloc(cur_height * cur_width * cur_channels * sizeof(float));
|
|
|
|
- if (!network->layers[layer].output){
|
|
|
|
- return DNN_ERROR;
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
|
|
+ av_assert0(input->dt == DNN_FLOAT);
|
|
|
|
+
|
|
|
|
+ /**
|
|
|
|
+ * as the first step, suppose network->operands[0] is the input operand.
|
|
|
|
+ */
|
|
|
|
+ network->operands[0].dims[0] = 1;
|
|
|
|
+ network->operands[0].dims[1] = input->height;
|
|
|
|
+ network->operands[0].dims[2] = input->width;
|
|
|
|
+ network->operands[0].dims[3] = input->channels;
|
|
|
|
+ network->operands[0].type = DOT_INPUT;
|
|
|
|
+ network->operands[0].data_type = DNN_FLOAT;
|
|
|
|
+ network->operands[0].isNHWC = 1;
|
|
|
|
+
|
|
|
|
+ av_freep(&network->operands[0].data);
|
|
|
|
+ network->operands[0].length = calculate_operand_data_length(&network->operands[0]);
|
|
|
|
+ network->operands[0].data = av_malloc(network->operands[0].length);
|
|
|
|
+ if (!network->operands[0].data)
|
|
|
|
+ return DNN_ERROR;
|
|
|
|
|
|
|
|
+ input->data = network->operands[0].data;
|
|
return DNN_SUCCESS;
|
|
return DNN_SUCCESS;
|
|
}
|
|
}
|
|
|
|
|
|
@@ -119,6 +72,7 @@ DNNModel *ff_dnn_load_model_native(const char *model_filename)
|
|
ConvolutionalParams *conv_params;
|
|
ConvolutionalParams *conv_params;
|
|
DepthToSpaceParams *depth_to_space_params;
|
|
DepthToSpaceParams *depth_to_space_params;
|
|
LayerPadParams *pad_params;
|
|
LayerPadParams *pad_params;
|
|
|
|
+ int32_t operand_index = 0;
|
|
|
|
|
|
model = av_malloc(sizeof(DNNModel));
|
|
model = av_malloc(sizeof(DNNModel));
|
|
if (!model){
|
|
if (!model){
|
|
@@ -131,7 +85,7 @@ DNNModel *ff_dnn_load_model_native(const char *model_filename)
|
|
}
|
|
}
|
|
file_size = avio_size(model_file_context);
|
|
file_size = avio_size(model_file_context);
|
|
|
|
|
|
- network = av_malloc(sizeof(ConvolutionalNetwork));
|
|
|
|
|
|
+ network = av_mallocz(sizeof(ConvolutionalNetwork));
|
|
if (!network){
|
|
if (!network){
|
|
avio_closep(&model_file_context);
|
|
avio_closep(&model_file_context);
|
|
av_freep(&model);
|
|
av_freep(&model);
|
|
@@ -139,32 +93,33 @@ DNNModel *ff_dnn_load_model_native(const char *model_filename)
|
|
}
|
|
}
|
|
model->model = (void *)network;
|
|
model->model = (void *)network;
|
|
|
|
|
|
- network->layers_num = 1 + (int32_t)avio_rl32(model_file_context);
|
|
|
|
|
|
+ network->layers_num = (int32_t)avio_rl32(model_file_context);
|
|
dnn_size = 4;
|
|
dnn_size = 4;
|
|
|
|
|
|
- network->layers = av_malloc(network->layers_num * sizeof(Layer));
|
|
|
|
|
|
+ network->layers = av_mallocz(network->layers_num * sizeof(Layer));
|
|
if (!network->layers){
|
|
if (!network->layers){
|
|
- av_freep(&network);
|
|
|
|
avio_closep(&model_file_context);
|
|
avio_closep(&model_file_context);
|
|
- av_freep(&model);
|
|
|
|
|
|
+ ff_dnn_free_model_native(&model);
|
|
return NULL;
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
|
|
- for (layer = 0; layer < network->layers_num; ++layer){
|
|
|
|
- network->layers[layer].output = NULL;
|
|
|
|
- network->layers[layer].params = NULL;
|
|
|
|
- }
|
|
|
|
- network->layers[0].type = INPUT;
|
|
|
|
- network->layers[0].params = av_malloc(sizeof(InputParams));
|
|
|
|
- if (!network->layers[0].params){
|
|
|
|
|
|
+ /**
|
|
|
|
+ * Operands should be read from model file, the whole change will be huge.
|
|
|
|
+ * to make things step by step, we first mock the operands, instead of reading from model file.
|
|
|
|
+ */
|
|
|
|
+ network->operands_num = network->layers_num + 1;
|
|
|
|
+ network->operands = av_mallocz(network->operands_num * sizeof(DnnOperand));
|
|
|
|
+ if (!network->operands){
|
|
avio_closep(&model_file_context);
|
|
avio_closep(&model_file_context);
|
|
ff_dnn_free_model_native(&model);
|
|
ff_dnn_free_model_native(&model);
|
|
return NULL;
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
|
|
- for (layer = 1; layer < network->layers_num; ++layer){
|
|
|
|
|
|
+ for (layer = 0; layer < network->layers_num; ++layer){
|
|
layer_type = (int32_t)avio_rl32(model_file_context);
|
|
layer_type = (int32_t)avio_rl32(model_file_context);
|
|
dnn_size += 4;
|
|
dnn_size += 4;
|
|
|
|
+ network->layers[layer].input_operand_indexes[0] = operand_index++;
|
|
|
|
+ network->layers[layer].output_operand_index = operand_index;
|
|
switch (layer_type){
|
|
switch (layer_type){
|
|
case CONV:
|
|
case CONV:
|
|
conv_params = av_malloc(sizeof(ConvolutionalParams));
|
|
conv_params = av_malloc(sizeof(ConvolutionalParams));
|
|
@@ -258,14 +213,35 @@ DNNModel *ff_dnn_load_model_native(const char *model_filename)
|
|
|
|
|
|
#define CLAMP_TO_EDGE(x, w) ((x) < 0 ? 0 : ((x) >= (w) ? (w - 1) : (x)))
|
|
#define CLAMP_TO_EDGE(x, w) ((x) < 0 ? 0 : ((x) >= (w) ? (w - 1) : (x)))
|
|
|
|
|
|
-static void convolve(const float *input, float *output, const ConvolutionalParams *conv_params, int width, int height)
|
|
|
|
|
|
+static int convolve(DnnOperand *operands, const int32_t *input_operand_indexes, int32_t output_operand_index, const ConvolutionalParams *conv_params)
|
|
{
|
|
{
|
|
|
|
+ float *output;
|
|
|
|
+ int32_t input_operand_index = input_operand_indexes[0];
|
|
|
|
+ int number = operands[input_operand_index].dims[0];
|
|
|
|
+ int height = operands[input_operand_index].dims[1];
|
|
|
|
+ int width = operands[input_operand_index].dims[2];
|
|
|
|
+ int channel = operands[input_operand_index].dims[3];
|
|
|
|
+ const float *input = operands[input_operand_index].data;
|
|
|
|
+
|
|
int radius = conv_params->kernel_size >> 1;
|
|
int radius = conv_params->kernel_size >> 1;
|
|
int src_linesize = width * conv_params->input_num;
|
|
int src_linesize = width * conv_params->input_num;
|
|
int filter_linesize = conv_params->kernel_size * conv_params->input_num;
|
|
int filter_linesize = conv_params->kernel_size * conv_params->input_num;
|
|
int filter_size = conv_params->kernel_size * filter_linesize;
|
|
int filter_size = conv_params->kernel_size * filter_linesize;
|
|
int pad_size = (conv_params->padding_method == VALID) ? (conv_params->kernel_size - 1) / 2 * conv_params->dilation : 0;
|
|
int pad_size = (conv_params->padding_method == VALID) ? (conv_params->kernel_size - 1) / 2 * conv_params->dilation : 0;
|
|
|
|
|
|
|
|
+ DnnOperand *output_operand = &operands[output_operand_index];
|
|
|
|
+ output_operand->dims[0] = number;
|
|
|
|
+ output_operand->dims[1] = height - pad_size * 2;
|
|
|
|
+ output_operand->dims[2] = width - pad_size * 2;
|
|
|
|
+ output_operand->dims[3] = conv_params->output_num;
|
|
|
|
+ output_operand->length = calculate_operand_data_length(output_operand);
|
|
|
|
+ output_operand->data = av_realloc(output_operand->data, output_operand->length);
|
|
|
|
+ if (!output_operand->data)
|
|
|
|
+ return -1;
|
|
|
|
+ output = output_operand->data;
|
|
|
|
+
|
|
|
|
+ av_assert0(channel == conv_params->input_num);
|
|
|
|
+
|
|
for (int y = pad_size; y < height - pad_size; ++y) {
|
|
for (int y = pad_size; y < height - pad_size; ++y) {
|
|
for (int x = pad_size; x < width - pad_size; ++x) {
|
|
for (int x = pad_size; x < width - pad_size; ++x) {
|
|
for (int n_filter = 0; n_filter < conv_params->output_num; ++n_filter) {
|
|
for (int n_filter = 0; n_filter < conv_params->output_num; ++n_filter) {
|
|
@@ -311,16 +287,36 @@ static void convolve(const float *input, float *output, const ConvolutionalParam
|
|
output += conv_params->output_num;
|
|
output += conv_params->output_num;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
+ return 0;
|
|
}
|
|
}
|
|
|
|
|
|
-static void depth_to_space(const float *input, float *output, int block_size, int width, int height, int channels)
|
|
|
|
|
|
+static int depth_to_space(DnnOperand *operands, const int32_t *input_operand_indexes, int32_t output_operand_index, int block_size)
|
|
{
|
|
{
|
|
|
|
+ float *output;
|
|
|
|
+ int32_t input_operand_index = input_operand_indexes[0];
|
|
|
|
+ int number = operands[input_operand_index].dims[0];
|
|
|
|
+ int height = operands[input_operand_index].dims[1];
|
|
|
|
+ int width = operands[input_operand_index].dims[2];
|
|
|
|
+ int channels = operands[input_operand_index].dims[3];
|
|
|
|
+ const float *input = operands[input_operand_index].data;
|
|
|
|
+
|
|
int y, x, by, bx, ch;
|
|
int y, x, by, bx, ch;
|
|
int new_channels = channels / (block_size * block_size);
|
|
int new_channels = channels / (block_size * block_size);
|
|
int output_linesize = width * channels;
|
|
int output_linesize = width * channels;
|
|
int by_linesize = output_linesize / block_size;
|
|
int by_linesize = output_linesize / block_size;
|
|
int x_linesize = new_channels * block_size;
|
|
int x_linesize = new_channels * block_size;
|
|
|
|
|
|
|
|
+ DnnOperand *output_operand = &operands[output_operand_index];
|
|
|
|
+ output_operand->dims[0] = number;
|
|
|
|
+ output_operand->dims[1] = height * block_size;
|
|
|
|
+ output_operand->dims[2] = width * block_size;
|
|
|
|
+ output_operand->dims[3] = new_channels;
|
|
|
|
+ output_operand->length = calculate_operand_data_length(output_operand);
|
|
|
|
+ output_operand->data = av_realloc(output_operand->data, output_operand->length);
|
|
|
|
+ if (!output_operand->data)
|
|
|
|
+ return -1;
|
|
|
|
+ output = output_operand->data;
|
|
|
|
+
|
|
for (y = 0; y < height; ++y){
|
|
for (y = 0; y < height; ++y){
|
|
for (x = 0; x < width; ++x){
|
|
for (x = 0; x < width; ++x){
|
|
for (by = 0; by < block_size; ++by){
|
|
for (by = 0; by < block_size; ++by){
|
|
@@ -334,58 +330,38 @@ static void depth_to_space(const float *input, float *output, int block_size, in
|
|
}
|
|
}
|
|
output += output_linesize;
|
|
output += output_linesize;
|
|
}
|
|
}
|
|
|
|
+ return 0;
|
|
}
|
|
}
|
|
|
|
|
|
DNNReturnType ff_dnn_execute_model_native(const DNNModel *model, DNNData *outputs, uint32_t nb_output)
|
|
DNNReturnType ff_dnn_execute_model_native(const DNNModel *model, DNNData *outputs, uint32_t nb_output)
|
|
{
|
|
{
|
|
ConvolutionalNetwork *network = (ConvolutionalNetwork *)model->model;
|
|
ConvolutionalNetwork *network = (ConvolutionalNetwork *)model->model;
|
|
- int cur_width, cur_height, cur_channels;
|
|
|
|
int32_t layer;
|
|
int32_t layer;
|
|
- InputParams *input_params;
|
|
|
|
ConvolutionalParams *conv_params;
|
|
ConvolutionalParams *conv_params;
|
|
DepthToSpaceParams *depth_to_space_params;
|
|
DepthToSpaceParams *depth_to_space_params;
|
|
LayerPadParams *pad_params;
|
|
LayerPadParams *pad_params;
|
|
|
|
|
|
- if (network->layers_num <= 0 || network->layers[0].type != INPUT || !network->layers[0].output){
|
|
|
|
|
|
+ if (network->layers_num <= 0 || network->operands_num <= 0)
|
|
|
|
+ return DNN_ERROR;
|
|
|
|
+ if (!network->operands[0].data)
|
|
return DNN_ERROR;
|
|
return DNN_ERROR;
|
|
- }
|
|
|
|
- else{
|
|
|
|
- input_params = (InputParams *)network->layers[0].params;
|
|
|
|
- cur_width = input_params->width;
|
|
|
|
- cur_height = input_params->height;
|
|
|
|
- cur_channels = input_params->channels;
|
|
|
|
- }
|
|
|
|
|
|
|
|
- for (layer = 1; layer < network->layers_num; ++layer){
|
|
|
|
- if (!network->layers[layer].output){
|
|
|
|
- return DNN_ERROR;
|
|
|
|
- }
|
|
|
|
|
|
+ for (layer = 0; layer < network->layers_num; ++layer){
|
|
switch (network->layers[layer].type){
|
|
switch (network->layers[layer].type){
|
|
case CONV:
|
|
case CONV:
|
|
conv_params = (ConvolutionalParams *)network->layers[layer].params;
|
|
conv_params = (ConvolutionalParams *)network->layers[layer].params;
|
|
- convolve(network->layers[layer - 1].output, network->layers[layer].output, conv_params, cur_width, cur_height);
|
|
|
|
- cur_channels = conv_params->output_num;
|
|
|
|
- if (conv_params->padding_method == VALID) {
|
|
|
|
- int pad_size = (conv_params->kernel_size - 1) * conv_params->dilation;
|
|
|
|
- cur_height -= pad_size;
|
|
|
|
- cur_width -= pad_size;
|
|
|
|
- }
|
|
|
|
|
|
+ convolve(network->operands, network->layers[layer].input_operand_indexes,
|
|
|
|
+ network->layers[layer].output_operand_index, conv_params);
|
|
break;
|
|
break;
|
|
case DEPTH_TO_SPACE:
|
|
case DEPTH_TO_SPACE:
|
|
depth_to_space_params = (DepthToSpaceParams *)network->layers[layer].params;
|
|
depth_to_space_params = (DepthToSpaceParams *)network->layers[layer].params;
|
|
- depth_to_space(network->layers[layer - 1].output, network->layers[layer].output,
|
|
|
|
- depth_to_space_params->block_size, cur_width, cur_height, cur_channels);
|
|
|
|
- cur_height *= depth_to_space_params->block_size;
|
|
|
|
- cur_width *= depth_to_space_params->block_size;
|
|
|
|
- cur_channels /= depth_to_space_params->block_size * depth_to_space_params->block_size;
|
|
|
|
|
|
+ depth_to_space(network->operands, network->layers[layer].input_operand_indexes,
|
|
|
|
+ network->layers[layer].output_operand_index, depth_to_space_params->block_size);
|
|
break;
|
|
break;
|
|
case MIRROR_PAD:
|
|
case MIRROR_PAD:
|
|
pad_params = (LayerPadParams *)network->layers[layer].params;
|
|
pad_params = (LayerPadParams *)network->layers[layer].params;
|
|
- dnn_execute_layer_pad(network->layers[layer - 1].output, network->layers[layer].output,
|
|
|
|
- pad_params, 1, cur_height, cur_width, cur_channels);
|
|
|
|
- cur_height = cur_height + pad_params->paddings[1][0] + pad_params->paddings[1][1];
|
|
|
|
- cur_width = cur_width + pad_params->paddings[2][0] + pad_params->paddings[2][1];
|
|
|
|
- cur_channels = cur_channels + pad_params->paddings[3][0] + pad_params->paddings[3][1];
|
|
|
|
|
|
+ dnn_execute_layer_pad(network->operands, network->layers[layer].input_operand_indexes,
|
|
|
|
+ network->layers[layer].output_operand_index, pad_params);
|
|
break;
|
|
break;
|
|
case INPUT:
|
|
case INPUT:
|
|
return DNN_ERROR;
|
|
return DNN_ERROR;
|
|
@@ -395,14 +371,24 @@ DNNReturnType ff_dnn_execute_model_native(const DNNModel *model, DNNData *output
|
|
// native mode does not support multiple outputs yet
|
|
// native mode does not support multiple outputs yet
|
|
if (nb_output > 1)
|
|
if (nb_output > 1)
|
|
return DNN_ERROR;
|
|
return DNN_ERROR;
|
|
- outputs[0].data = network->layers[network->layers_num - 1].output;
|
|
|
|
- outputs[0].height = cur_height;
|
|
|
|
- outputs[0].width = cur_width;
|
|
|
|
- outputs[0].channels = cur_channels;
|
|
|
|
|
|
+
|
|
|
|
+ /**
|
|
|
|
+ * as the first step, suppose network->operands[network->operands_num - 1] is the output operand.
|
|
|
|
+ */
|
|
|
|
+ outputs[0].data = network->operands[network->operands_num - 1].data;
|
|
|
|
+ outputs[0].height = network->operands[network->operands_num - 1].dims[1];
|
|
|
|
+ outputs[0].width = network->operands[network->operands_num - 1].dims[2];
|
|
|
|
+ outputs[0].channels = network->operands[network->operands_num - 1].dims[3];
|
|
|
|
|
|
return DNN_SUCCESS;
|
|
return DNN_SUCCESS;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
+int32_t calculate_operand_data_length(DnnOperand* operand)
|
|
|
|
+{
|
|
|
|
+ // currently, we just support DNN_FLOAT
|
|
|
|
+ return operand->dims[0] * operand->dims[1] * operand->dims[2] * operand->dims[3] * sizeof(float);
|
|
|
|
+}
|
|
|
|
+
|
|
void ff_dnn_free_model_native(DNNModel **model)
|
|
void ff_dnn_free_model_native(DNNModel **model)
|
|
{
|
|
{
|
|
ConvolutionalNetwork *network;
|
|
ConvolutionalNetwork *network;
|
|
@@ -413,7 +399,6 @@ void ff_dnn_free_model_native(DNNModel **model)
|
|
{
|
|
{
|
|
network = (ConvolutionalNetwork *)(*model)->model;
|
|
network = (ConvolutionalNetwork *)(*model)->model;
|
|
for (layer = 0; layer < network->layers_num; ++layer){
|
|
for (layer = 0; layer < network->layers_num; ++layer){
|
|
- av_freep(&network->layers[layer].output);
|
|
|
|
if (network->layers[layer].type == CONV){
|
|
if (network->layers[layer].type == CONV){
|
|
conv_params = (ConvolutionalParams *)network->layers[layer].params;
|
|
conv_params = (ConvolutionalParams *)network->layers[layer].params;
|
|
av_freep(&conv_params->kernel);
|
|
av_freep(&conv_params->kernel);
|
|
@@ -422,6 +407,11 @@ void ff_dnn_free_model_native(DNNModel **model)
|
|
av_freep(&network->layers[layer].params);
|
|
av_freep(&network->layers[layer].params);
|
|
}
|
|
}
|
|
av_freep(&network->layers);
|
|
av_freep(&network->layers);
|
|
|
|
+
|
|
|
|
+ for (uint32_t operand = 0; operand < network->operands_num; ++operand)
|
|
|
|
+ av_freep(&network->operands[operand].data);
|
|
|
|
+ av_freep(&network->operands);
|
|
|
|
+
|
|
av_freep(&network);
|
|
av_freep(&network);
|
|
av_freep(model);
|
|
av_freep(model);
|
|
}
|
|
}
|