#include #include #include #include #include #include #include #include using namespace Slic3r; TEST_CASE("Polygon::contains works properly", ""){ // this test was failing on Windows (GH #1950) Slic3r::Polygon polygon( Points{ Point{207802834,-57084522}, Point{196528149,-37556190}, Point{173626821,-25420928}, Point{171285751,-21366123}, Point{118673592,-21366123}, Point{116332562,-25420928}, Point{93431208,-37556191}, Point{82156517,-57084523}, Point{129714478,-84542120}, Point{160244873,-84542120} } ); Point point{ 95706562, -57294774 }; REQUIRE(polygon.contains(point)); } SCENARIO("Intersections of line segments"){ GIVEN("Integer coordinates"){ Line line1{ Point{5,15},Point{30,15} }; Line line2{ Point{10,20}, Point{10,10} }; THEN("The intersection is valid"){ Point point; line1.intersection(line2,&point); REQUIRE(Point{ 10,15 } == point); } } GIVEN("Scaled coordinates"){ Line line1{ Point::new_scale(73.6310778185108, 371.74239268924), Point::new_scale(73.6310778185108, 501.74239268924) }; Line line2{ Point::new_scale(75, 437.9853), Point::new_scale(62.7484, 440.4223) }; THEN("There is still an intersection"){ Point point; REQUIRE(line1.intersection(line2,&point)); } } } /* Tests for unused methods still written in perl { my $polygon = Slic3r::Polygon->new( [45919000, 515273900], [14726100, 461246400], [14726100, 348753500], [33988700, 315389800], [43749700, 343843000], [45422300, 352251500], [52362100, 362637800], [62748400, 369577600], [75000000, 372014700], [87251500, 369577600], [97637800, 362637800], [104577600, 352251500], [107014700, 340000000], [104577600, 327748400], [97637800, 317362100], [87251500, 310422300], [82789200, 309534700], [69846100, 294726100], [254081000, 294726100], [285273900, 348753500], [285273900, 461246400], [254081000, 515273900], ); # this points belongs to $polyline # note: it's actually a vertex, while we should better check an intermediate point my $point = Slic3r::Point->new(104577600, 327748400); local $Slic3r::Geometry::epsilon = 1E-5; is_deeply Slic3r::Geometry::polygon_segment_having_point($polygon, $point)->pp, [ [107014700, 340000000], [104577600, 327748400] ], 'polygon_segment_having_point'; } { auto point = Point{736310778.185108, 5017423926.8924}; auto line = Line(Point{(long int} 627484000, (long int) 3695776000), Point{(long int} 750000000, (long int)3720147000)); //is Slic3r::Geometry::point_in_segment($point, $line), 0, 'point_in_segment'; } // Possible to delete { //my $p1 = [10, 10]; //my $p2 = [10, 20]; //my $p3 = [10, 30]; //my $p4 = [20, 20]; //my $p5 = [0, 20]; THEN("Points in a line give the correct angles"){ //is Slic3r::Geometry::angle3points($p2, $p3, $p1), PI(), 'angle3points'; //is Slic3r::Geometry::angle3points($p2, $p1, $p3), PI(), 'angle3points'; } THEN("Left turns give the correct angle"){ //is Slic3r::Geometry::angle3points($p2, $p4, $p3), PI()/2, 'angle3points'; //is Slic3r::Geometry::angle3points($p2, $p1, $p4), PI()/2, 'angle3points'; } THEN("Right turns give the correct angle"){ //is Slic3r::Geometry::angle3points($p2, $p3, $p4), PI()/2*3, 'angle3points'; //is Slic3r::Geometry::angle3points($p2, $p1, $p5), PI()/2*3, 'angle3points'; } //my $p1 = [30, 30]; //my $p2 = [20, 20]; //my $p3 = [10, 10]; //my $p4 = [30, 10]; //is Slic3r::Geometry::angle3points($p2, $p1, $p3), PI(), 'angle3points'; //is Slic3r::Geometry::angle3points($p2, $p1, $p4), PI()/2*3, 'angle3points'; //is Slic3r::Geometry::angle3points($p2, $p1, $p1), 2*PI(), 'angle3points'; } SCENARIO("polygon_is_convex works"){ GIVEN("A square of dimension 10"){ //my $cw_square = [ [0,0], [0,10], [10,10], [10,0] ]; THEN("It is not convex clockwise"){ //is polygon_is_convex($cw_square), 0, 'cw square is not convex'; } THEN("It is convex counter-clockwise"){ //is polygon_is_convex([ reverse @$cw_square ]), 1, 'ccw square is convex'; } } GIVEN("A concave polygon"){ //my $convex1 = [ [0,0], [10,0], [10,10], [0,10], [0,6], [4,6], [4,4], [0,4] ]; THEN("It is concave"){ //is polygon_is_convex($convex1), 0, 'concave polygon'; } } }*/ TEST_CASE("Creating a polyline generates the obvious lines"){ auto polyline = Slic3r::Polyline(); polyline.points = std::vector({Point{0, 0}, Point{10, 0}, Point{20, 0}}); REQUIRE(polyline.lines().at(0).a == Point{0,0}); REQUIRE(polyline.lines().at(0).b == Point{10,0}); REQUIRE(polyline.lines().at(1).a == Point{10,0}); REQUIRE(polyline.lines().at(1).b == Point{20,0}); } TEST_CASE("Splitting a Polygon generates a polyline correctly"){ auto polygon = Slic3r::Polygon(std::vector({Point{0, 0}, Point{10, 0}, Point{5, 5}})); auto split = polygon.split_at_index(1); REQUIRE(split.points[0]==Point{10,0}); REQUIRE(split.points[1]==Point{5,5}); REQUIRE(split.points[2]==Point{0,0}); REQUIRE(split.points[3]==Point{10,0}); } TEST_CASE("Bounding boxes are scaled appropriately"){ auto bb = BoundingBox(std::vector({Point{0, 1}, Point{10, 2}, Point{20, 2}})); bb.scale(2); REQUIRE(bb.min == Point{0,2}); REQUIRE(bb.max == Point{40,4}); } TEST_CASE("Offseting a line generates a polygon correctly"){ Slic3r::Polyline tmp(Points{{10,10},{20,10} }); Slic3r::Polygon area = offset(tmp,5).at(0); REQUIRE(area.area() == Slic3r::Polygon(std::vector({Point{10,5},Point{20,5},Point{20,15},Point{10,15}})).area()); } SCENARIO("Circle Fit, TaubinFit with Newton's method") { GIVEN("A vector of Pointfs arranged in a half-circle with approximately the same distance R from some point") { Vec2d expected_center(-6, 0); Pointfs sample {Vec2d{6.0, 0}, Vec2d{5.1961524, 3}, Vec2d{3 ,5.1961524}, Vec2d{0, 6.0}, Vec2d{-3, 5.1961524}, Vec2d{-5.1961524, 3}, Vec2d{-6.0, 0}}; std::transform(sample.begin(), sample.end(), sample.begin(), [expected_center] (const Vec2d& a) { return a + expected_center;}); WHEN("Circle fit is called on the entire array") { Vec2d result_center(0,0); result_center = Geometry::circle_center_taubin_newton(sample); THEN("A center point of -6,0 is returned.") { REQUIRE((result_center - expected_center).norm() < EPSILON); } } WHEN("Circle fit is called on the first four points") { Vec2d result_center(0,0); result_center = Geometry::circle_center_taubin_newton(sample.cbegin(), sample.cbegin()+4); THEN("A center point of -6,0 is returned.") { REQUIRE((result_center - expected_center).norm() < EPSILON); } } WHEN("Circle fit is called on the middle four points") { Vec2d result_center(0,0); result_center = Geometry::circle_center_taubin_newton(sample.cbegin()+2, sample.cbegin()+6); THEN("A center point of -6,0 is returned.") { REQUIRE((result_center - expected_center).norm() < EPSILON); } } } GIVEN("A vector of Pointfs arranged in a half-circle with approximately the same distance R from some point") { Vec2d expected_center(-3, 9); Vec2ds sample {Vec2d{6.0, 0}, Vec2d{5.1961524, 3}, Vec2d{3 ,5.1961524}, Vec2d{0, 6.0}, Vec2d{3, 5.1961524}, Vec2d{-5.1961524, 3}, Vec2d{-6.0, 0}}; std::transform(sample.begin(), sample.end(), sample.begin(), [expected_center] (const Vec2d& a) { return a + expected_center;}); WHEN("Circle fit is called on the entire array") { Vec2d result_center(0,0); result_center = Geometry::circle_center_taubin_newton(sample); THEN("A center point of 3,9 is returned.") { REQUIRE((result_center - expected_center).norm() < EPSILON); } } WHEN("Circle fit is called on the first four points") { Vec2d result_center(0,0); result_center = Geometry::circle_center_taubin_newton(sample.cbegin(), sample.cbegin()+4); THEN("A center point of 3,9 is returned.") { REQUIRE((result_center - expected_center).norm() < EPSILON); } } WHEN("Circle fit is called on the middle four points") { Vec2d result_center(0,0); result_center = Geometry::circle_center_taubin_newton(sample.cbegin()+2, sample.cbegin()+6); THEN("A center point of 3,9 is returned.") { REQUIRE((result_center - expected_center).norm() < EPSILON); } } } GIVEN("A vector of Points arranged in a half-circle with approximately the same distance R from some point") { Point expected_center { Point::new_scale(-3, 9)}; Points sample {Point::new_scale(6.0, 0), Point::new_scale(5.1961524, 3), Point::new_scale(3 ,5.1961524), Point::new_scale(0, 6.0), Point::new_scale(3, 5.1961524), Point::new_scale(-5.1961524, 3), Point::new_scale(-6.0, 0)}; std::transform(sample.begin(), sample.end(), sample.begin(), [expected_center] (const Point& a) { return a + expected_center;}); WHEN("Circle fit is called on the entire array") { Point result_center(0,0); result_center = Geometry::circle_center_taubin_newton(sample); THEN("A center point of scaled 3,9 is returned.") { REQUIRE(result_center.coincides_with_epsilon(expected_center)); } } WHEN("Circle fit is called on the first four points") { Point result_center(0,0); result_center = Geometry::circle_center_taubin_newton(sample.cbegin(), sample.cbegin()+4); THEN("A center point of scaled 3,9 is returned.") { REQUIRE(result_center.coincides_with_epsilon(expected_center)); } } WHEN("Circle fit is called on the middle four points") { Point result_center(0,0); result_center = Geometry::circle_center_taubin_newton(sample.cbegin()+2, sample.cbegin()+6); THEN("A center point of scaled 3,9 is returned.") { REQUIRE(result_center.coincides_with_epsilon(expected_center)); } } } } // A PU //TEST_CASE("Chained path working correctly"){ // // if chained_path() works correctly, these points should be joined with no diagonal paths // // (thus 26 units long) // std::vector points = {Point{26,26},Point{52,26},Point{0,26},Point{26,52},Point{26,0},Point{0,52},Point{52,52},Point{52,0}}; // std::vector indices; // Geometry::chained_path(points,indices); // for(Points::size_type i = 0; i < indices.size()-1;i++){ // double dist = points.at(indices.at(i)).distance_to(points.at(indices.at(i+1))); // REQUIRE(abs(dist-26) <= EPSILON); // } //} SCENARIO("Line distances"){ GIVEN("A line"){ Line line{ Point{0, 0}, Point{20, 0} }; THEN("Points on the line segment have 0 distance"){ REQUIRE(Point{0, 0}.distance_to(line) == 0); REQUIRE(Point{20, 0}.distance_to(line) == 0); REQUIRE(Point{10, 0}.distance_to(line) == 0); } THEN("Points off the line have the appropriate distance"){ REQUIRE(Point{10, 10}.distance_to(line) == 10); REQUIRE(Point{50, 0}.distance_to(line) == 30); } } } SCENARIO("Polygon convex/concave detection"){ GIVEN(("A Square with dimension 100")){ Slic3r::Polygon square/*new_scale*/{ std::vector{ Point{100,100}, Point{200,100}, Point{200,200}, Point{100,200}}}; THEN("It has 4 convex points counterclockwise"){ REQUIRE(square.concave_points(PI*4/3).size() == 0); REQUIRE(square.convex_points(PI*2/3).size() == 4); } THEN("It has 4 concave points clockwise"){ square.make_clockwise(); REQUIRE(square.concave_points(PI*4/3).size() == 4); REQUIRE(square.convex_points(PI*2/3).size() == 0); } } GIVEN("A Square with an extra colinearvertex"){ Slic3r::Polygon square /*new_scale*/{ std::vector{ Point{150,100}, Point{200,100}, Point{200,200}, Point{100,200}, Point{100,100}} }; THEN("It has 4 convex points counterclockwise"){ REQUIRE(square.concave_points(PI*4/3).size() == 0); REQUIRE(square.convex_points(PI*2/3).size() == 4); } } GIVEN("A Square with an extra collinear vertex in different order"){ Slic3r::Polygon square /*new_scale*/{ std::vector{ Point{200,200}, Point{100,200}, Point{100,100}, Point{150,100}, Point{200,100}} }; THEN("It has 4 convex points counterclockwise"){ REQUIRE(square.concave_points(PI*4/3).size() == 0); REQUIRE(square.convex_points(PI*2/3).size() == 4); } } GIVEN("A triangle"){ Slic3r::Polygon triangle{ std::vector{ Point{16000170,26257364}, Point{714223,461012}, Point{31286371,461008} } }; THEN("it has three convex vertices"){ REQUIRE(triangle.concave_points(PI*4/3).size() == 0); REQUIRE(triangle.convex_points(PI*2/3).size() == 3); } } GIVEN("A triangle with an extra collinear point"){ Slic3r::Polygon triangle{ std::vector{ Point{16000170,26257364}, Point{714223,461012}, Point{20000000,461012}, Point{31286371,461012} } }; THEN("it has three convex vertices"){ REQUIRE(triangle.concave_points(PI*4/3).size() == 0); REQUIRE(triangle.convex_points(PI*2/3).size() == 3); } } GIVEN("A polygon with concave vertices with angles of specifically 4/3pi"){ // Two concave vertices of this polygon have angle = PI*4/3, so this test fails // if epsilon is not used. Slic3r::Polygon polygon{ std::vector{ Point{60246458,14802768},Point{64477191,12360001}, Point{63727343,11060995},Point{64086449,10853608}, Point{66393722,14850069},Point{66034704,15057334}, Point{65284646,13758387},Point{61053864,16200839}, Point{69200258,30310849},Point{62172547,42483120}, Point{61137680,41850279},Point{67799985,30310848}, Point{51399866,1905506},Point{38092663,1905506}, Point{38092663,692699},Point{52100125,692699} } }; THEN("the correct number of points are detected"){ REQUIRE(polygon.concave_points(PI*4/3).size() == 6); REQUIRE(polygon.convex_points(PI*2/3).size() == 10); } } } TEST_CASE("Triangle Simplification does not result in less than 3 points"){ Slic3r::Polygon triangle{ std::vector{ Point{16000170,26257364}, Point{714223,461012}, Point{31286371,461008} } }; REQUIRE(triangle.simplify(250000).at(0).points.size() == 3); }