# Implements pure perl packages
#
# Slic3r::GUI::3DScene::Base;
# Slic3r::GUI::3DScene;
#
# Slic3r::GUI::Plater::3D derives from Slic3r::GUI::3DScene,
# Slic3r::GUI::Plater::3DPreview, Slic3r::GUI::Plater::3DToolpaths, 
# Slic3r::GUI::Plater::ObjectCutDialog and Slic3r::GUI::Plater::ObjectPartsPanel
# own $self->{canvas} of the Slic3r::GUI::3DScene type.
#
# Therefore the 3DScene supports renderng of STLs, extrusions and cutting planes,
# and camera manipulation.

package Slic3r::GUI::3DScene::Base;
use strict;
use warnings;

use Wx qw(wxTheApp :timer :bitmap :icon :dialog);
use Wx::Event qw(EVT_PAINT EVT_SIZE EVT_ERASE_BACKGROUND EVT_IDLE EVT_MOUSEWHEEL EVT_MOUSE_EVENTS EVT_CHAR EVT_TIMER);
# must load OpenGL *before* Wx::GLCanvas
use OpenGL qw(:glconstants :glfunctions :glufunctions :gluconstants);
use base qw(Wx::GLCanvas Class::Accessor);
use Math::Trig qw(asin tan);
use List::Util qw(reduce min max first);
use Slic3r::Geometry qw(X Y normalize scale unscale scaled_epsilon);
use Slic3r::Geometry::Clipper qw(offset_ex intersection_pl JT_ROUND);
use Wx::GLCanvas qw(:all);
use Slic3r::Geometry qw(PI);

# _dirty: boolean flag indicating, that the screen has to be redrawn on EVT_IDLE.
# volumes: reference to vector of Slic3r::GUI::3DScene::Volume.
# _camera_type: 'perspective' or 'ortho'
__PACKAGE__->mk_accessors( qw(_quat _dirty init
                              enable_picking
                              enable_moving
                              use_plain_shader
                              on_viewport_changed
                              on_hover
                              on_select
                              on_double_click
                              on_right_click
                              on_move
                              on_model_update
                              volumes
                              _sphi _stheta
                              cutting_plane_z
                              cut_lines_vertices
                              bed_shape
                              bed_triangles
                              bed_grid_lines
                              bed_polygon
                              background
                              origin
                              _mouse_pos
                              _hover_volume_idx

                              _drag_volume_idx
                              _drag_start_pos
                              _drag_volume_center_offset
                              _drag_start_xy
                              _dragged

                              _layer_height_edited

                              _camera_type
                              _camera_target
                              _camera_distance
                              _zoom
                              ) );

use constant TRACKBALLSIZE  => 0.8;
use constant TURNTABLE_MODE => 1;
use constant GROUND_Z       => -0.02;
# For mesh selection: Not selected - bright yellow.
use constant DEFAULT_COLOR  => [1,1,0];
# For mesh selection: Selected - bright green.
use constant SELECTED_COLOR => [0,1,0,1];
# For mesh selection: Mouse hovers over the object, but object not selected yet - dark green.
use constant HOVER_COLOR    => [0.4,0.9,0,1];

# phi / theta angles to orient the camera.
use constant VIEW_DEFAULT    => [45.0,45.0];
use constant VIEW_LEFT       => [90.0,90.0];
use constant VIEW_RIGHT      => [-90.0,90.0];
use constant VIEW_TOP        => [0.0,0.0];
use constant VIEW_BOTTOM     => [0.0,180.0];
use constant VIEW_FRONT      => [0.0,90.0];
use constant VIEW_REAR       => [180.0,90.0];

use constant MANIPULATION_IDLE          => 0;
use constant MANIPULATION_DRAGGING      => 1;
use constant MANIPULATION_LAYER_HEIGHT  => 2;

use constant GIMBALL_LOCK_THETA_MAX => 170;

use constant VARIABLE_LAYER_THICKNESS_BAR_WIDTH => 70;
use constant VARIABLE_LAYER_THICKNESS_RESET_BUTTON_HEIGHT => 22;

# make OpenGL::Array thread-safe
{
    no warnings 'redefine';
    *OpenGL::Array::CLONE_SKIP = sub { 1 };
}

sub new {
    my ($class, $parent) = @_;
    
    # We can only enable multi sample anti aliasing wih wxWidgets 3.0.3 and with a hacked Wx::GLCanvas,
    # which exports some new WX_GL_XXX constants, namely WX_GL_SAMPLE_BUFFERS and WX_GL_SAMPLES.
    my $can_multisample =
        ! wxTheApp->{app_config}->get('use_legacy_opengl') &&
        Wx::wxVERSION >= 3.000003 &&
        defined Wx::GLCanvas->can('WX_GL_SAMPLE_BUFFERS') &&
        defined Wx::GLCanvas->can('WX_GL_SAMPLES');
    my $attrib = [WX_GL_RGBA, WX_GL_DOUBLEBUFFER, WX_GL_DEPTH_SIZE, 24];
    if ($can_multisample) {
        # Request a window with multi sampled anti aliasing. This is a new feature in Wx 3.0.3 (backported from 3.1.0).
        # Use eval to avoid compilation, if the subs WX_GL_SAMPLE_BUFFERS and WX_GL_SAMPLES are missing.
        eval 'push(@$attrib, (WX_GL_SAMPLE_BUFFERS, 1, WX_GL_SAMPLES, 4));';
    }
    # wxWidgets expect the attrib list to be ended by zero.
    push(@$attrib, 0);

    # we request a depth buffer explicitely because it looks like it's not created by 
    # default on Linux, causing transparency issues
    my $self = $class->SUPER::new($parent, -1, Wx::wxDefaultPosition, Wx::wxDefaultSize, 0, "", $attrib);
    if (Wx::wxVERSION >= 3.000003) {
        # Wx 3.0.3 contains an ugly hack to support some advanced OpenGL attributes through the attribute list.
        # The attribute list is transferred between the wxGLCanvas and wxGLContext constructors using a single static array s_wglContextAttribs.
        # Immediatelly force creation of the OpenGL context to consume the static variable s_wglContextAttribs.
        $self->GetContext();
    }

    $self->{can_multisample} = $can_multisample;
    $self->background(1);
    $self->_quat((0, 0, 0, 1));
    $self->_stheta(45);
    $self->_sphi(45);
    $self->_zoom(1);
    $self->use_plain_shader(0);

    # Collection of GLVolume objects
    $self->volumes(Slic3r::GUI::_3DScene::GLVolume::Collection->new);

    # 3D point in model space
    $self->_camera_type('ortho');
#    $self->_camera_type('perspective');
    $self->_camera_target(Slic3r::Pointf3->new(0,0,0));
    $self->_camera_distance(0.);

    $self->layer_editing_enabled(0);
    $self->{layer_height_edit_band_width} = 2.;
    $self->{layer_height_edit_strength} = 0.005;
    $self->{layer_height_edit_last_object_id} = -1;
    $self->{layer_height_edit_last_z} = 0.;
    $self->{layer_height_edit_last_action} = 0;

    $self->reset_objects;
    
    EVT_PAINT($self, sub {
        my $dc = Wx::PaintDC->new($self);
        $self->Render($dc);
    });
    EVT_SIZE($self, sub { $self->_dirty(1) });
    EVT_IDLE($self, sub {
        return unless $self->_dirty;
        return if !$self->IsShownOnScreen;
        $self->Resize( $self->GetSizeWH );
        $self->Refresh;
    });
    EVT_MOUSEWHEEL($self, \&mouse_wheel_event);
    EVT_MOUSE_EVENTS($self, \&mouse_event);
#    EVT_KEY_DOWN($self, sub {
    EVT_CHAR($self, sub {
        my ($s, $event) = @_;
        if ($event->HasModifiers) {
            $event->Skip;
        } else {
            my $key = $event->GetKeyCode;
            if ($key == ord('0')) {
                $self->select_view('iso');
            } elsif ($key == ord('1')) {
                $self->select_view('top');
            } elsif ($key == ord('2')) {
                $self->select_view('bottom');
            } elsif ($key == ord('3')) {
                $self->select_view('front');
            } elsif ($key == ord('4')) {
                $self->select_view('rear');
            } elsif ($key == ord('5')) {
                $self->select_view('left');
            } elsif ($key == ord('6')) {
                $self->select_view('right');
            } else {
                $event->Skip;
            }
        }
    });
    
    $self->{layer_height_edit_timer_id} = &Wx::NewId();
    $self->{layer_height_edit_timer} = Wx::Timer->new($self, $self->{layer_height_edit_timer_id});
    EVT_TIMER($self, $self->{layer_height_edit_timer_id}, sub {
        my ($self, $event) = @_;
        return if $self->_layer_height_edited != 1;
        return if $self->{layer_height_edit_last_object_id} == -1;
        $self->_variable_layer_thickness_action(undef);
    });
    
    return $self;
}

sub Destroy {
    my ($self) = @_;
    $self->{layer_height_edit_timer}->Stop;
    $self->DestroyGL;
    return $self->SUPER::Destroy;
}

sub layer_editing_enabled {
    my ($self, $value) = @_;
    if (@_ == 2) {
        $self->{layer_editing_enabled} = $value;
        if ($value) {
            if (! $self->{layer_editing_initialized}) {
                # Enabling the layer editing for the first time. This triggers compilation of the necessary OpenGL shaders.
                # If compilation fails, a message box is shown with the error codes.
                $self->SetCurrent($self->GetContext);
                my $shader = new Slic3r::GUI::_3DScene::GLShader;
                my $error_message;
                if (! $shader->load($self->_fragment_shader_variable_layer_height, $self->_vertex_shader_variable_layer_height)) {
                    # Compilation or linking of the shaders failed.
                    $error_message = "Cannot compile an OpenGL Shader, therefore the Variable Layer Editing will be disabled.\n\n" 
                        . $shader->last_error;
                    $shader = undef;
                } else {
                    $self->{layer_height_edit_shader} = $shader;
                    ($self->{layer_preview_z_texture_id}) = glGenTextures_p(1);
                    glBindTexture(GL_TEXTURE_2D, $self->{layer_preview_z_texture_id});
                    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);
                    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);
                    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
                    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_NEAREST);
                    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 1);
                    glBindTexture(GL_TEXTURE_2D, 0);
                }
                if (defined($error_message)) {
                    # Don't enable the layer editing tool.
                    $self->{layer_editing_enabled} = 0;
                    # 2 means failed
                    $self->{layer_editing_initialized} = 2;
                    # Show the error message.
                    Wx::MessageBox($error_message, "Slic3r Error", wxOK | wxICON_EXCLAMATION, $self);
                } else {
                    $self->{layer_editing_initialized} = 1;
                }
            } elsif ($self->{layer_editing_initialized} == 2) {
                # Initilization failed before. Don't try to initialize and disable layer editing.
                $self->{layer_editing_enabled} = 0;
            }
        }
    }
    return $self->{layer_editing_enabled};
}

sub layer_editing_allowed {
    my ($self) = @_;
    # Allow layer editing if either the shaders were not initialized yet and we don't know
    # whether it will be possible to initialize them, 
    # or if the initialization was done already and it failed.
    return ! (defined($self->{layer_editing_initialized}) && $self->{layer_editing_initialized} == 2);
}

sub _first_selected_object_id_for_variable_layer_height_editing {
    my ($self) = @_;
    for my $i (0..$#{$self->volumes}) {
        if ($self->volumes->[$i]->selected) {
            my $object_id = int($self->volumes->[$i]->select_group_id / 1000000);
            # Objects with object_id >= 1000 have a specific meaning, for example the wipe tower proxy.
            return ($object_id >= $self->{print}->object_count) ? -1 : $object_id
                if $object_id < 10000;
        }
    }
    return -1;
}

# Returns an array with (left, top, right, bottom) of the variable layer thickness bar on the screen.
sub _variable_layer_thickness_bar_rect_screen {
    my ($self) = @_;
    my ($cw, $ch) = $self->GetSizeWH;
    return ($cw - VARIABLE_LAYER_THICKNESS_BAR_WIDTH, 0, $cw, $ch - VARIABLE_LAYER_THICKNESS_RESET_BUTTON_HEIGHT);
}

sub _variable_layer_thickness_bar_rect_viewport {
    my ($self) = @_;
    my ($cw, $ch) = $self->GetSizeWH;
    return ((0.5*$cw-VARIABLE_LAYER_THICKNESS_BAR_WIDTH)/$self->_zoom, (-0.5*$ch+VARIABLE_LAYER_THICKNESS_RESET_BUTTON_HEIGHT)/$self->_zoom, $cw/(2*$self->_zoom), $ch/(2*$self->_zoom));
}

# Returns an array with (left, top, right, bottom) of the variable layer thickness bar on the screen.
sub _variable_layer_thickness_reset_rect_screen {
    my ($self) = @_;
    my ($cw, $ch) = $self->GetSizeWH;
    return ($cw - VARIABLE_LAYER_THICKNESS_BAR_WIDTH, $ch - VARIABLE_LAYER_THICKNESS_RESET_BUTTON_HEIGHT, $cw, $ch);
}

sub _variable_layer_thickness_reset_rect_viewport {
    my ($self) = @_;
    my ($cw, $ch) = $self->GetSizeWH;
    return ((0.5*$cw-VARIABLE_LAYER_THICKNESS_BAR_WIDTH)/$self->_zoom, -$ch/(2*$self->_zoom), $cw/(2*$self->_zoom), (-0.5*$ch+VARIABLE_LAYER_THICKNESS_RESET_BUTTON_HEIGHT)/$self->_zoom);
}

sub _variable_layer_thickness_bar_rect_mouse_inside {
   my ($self, $mouse_evt) = @_;
   my ($bar_left, $bar_top, $bar_right, $bar_bottom) = $self->_variable_layer_thickness_bar_rect_screen;
   return $mouse_evt->GetX >= $bar_left && $mouse_evt->GetX <= $bar_right && $mouse_evt->GetY >= $bar_top && $mouse_evt->GetY <= $bar_bottom;
}

sub _variable_layer_thickness_reset_rect_mouse_inside {
   my ($self, $mouse_evt) = @_;
   my ($bar_left, $bar_top, $bar_right, $bar_bottom) = $self->_variable_layer_thickness_reset_rect_screen;
   return $mouse_evt->GetX >= $bar_left && $mouse_evt->GetX <= $bar_right && $mouse_evt->GetY >= $bar_top && $mouse_evt->GetY <= $bar_bottom;
}

sub _variable_layer_thickness_bar_mouse_cursor_z_relative {
   my ($self) = @_;
   my $mouse_pos = $self->ScreenToClientPoint(Wx::GetMousePosition());
   my ($bar_left, $bar_top, $bar_right, $bar_bottom) = $self->_variable_layer_thickness_bar_rect_screen;
   return ($mouse_pos->x >= $bar_left && $mouse_pos->x <= $bar_right && $mouse_pos->y >= $bar_top && $mouse_pos->y <= $bar_bottom) ?
        # Inside the bar.
        ($bar_bottom - $mouse_pos->y - 1.) / ($bar_bottom - $bar_top - 1) :
        # Outside the bar.
        -1000.;
}

sub _variable_layer_thickness_action {
    my ($self, $mouse_event, $do_modification) = @_;
    # A volume is selected. Test, whether hovering over a layer thickness bar.
    return if $self->{layer_height_edit_last_object_id} == -1;
    if (defined($mouse_event)) {
        my ($bar_left, $bar_top, $bar_right, $bar_bottom) = $self->_variable_layer_thickness_bar_rect_screen;
        $self->{layer_height_edit_last_z} = unscale($self->{print}->get_object($self->{layer_height_edit_last_object_id})->size->z)
            * ($bar_bottom - $mouse_event->GetY - 1.) / ($bar_bottom - $bar_top);
        $self->{layer_height_edit_last_action} = $mouse_event->ShiftDown ? ($mouse_event->RightIsDown ? 3 : 2) : ($mouse_event->RightIsDown ? 0 : 1);
    }
    # Mark the volume as modified, so Print will pick its layer height profile? Where to mark it?
    # Start a timer to refresh the print? schedule_background_process() ?
    # The PrintObject::adjust_layer_height_profile() call adjusts the profile of its associated ModelObject, it does not modify the profile of the PrintObject itself.
    $self->{print}->get_object($self->{layer_height_edit_last_object_id})->adjust_layer_height_profile(
        $self->{layer_height_edit_last_z},
        $self->{layer_height_edit_strength},
        $self->{layer_height_edit_band_width}, 
        $self->{layer_height_edit_last_action});
    $self->volumes->[$self->{layer_height_edit_last_object_id}]->generate_layer_height_texture(
        $self->{print}->get_object($self->{layer_height_edit_last_object_id}), 1);
    $self->Refresh;
    # Automatic action on mouse down with the same coordinate.
    $self->{layer_height_edit_timer}->Start(100, wxTIMER_CONTINUOUS);
}

sub mouse_event {
    my ($self, $e) = @_;
    
    my $pos = Slic3r::Pointf->new($e->GetPositionXY);
    my $object_idx_selected = $self->{layer_height_edit_last_object_id} = ($self->layer_editing_enabled && $self->{print}) ? $self->_first_selected_object_id_for_variable_layer_height_editing : -1;

    if ($e->Entering && &Wx::wxMSW) {
        # wxMSW needs focus in order to catch mouse wheel events
        $self->SetFocus;
        $self->_drag_start_xy(undef);        
    } elsif ($e->LeftDClick) {
        if ($object_idx_selected != -1 && $self->_variable_layer_thickness_bar_rect_mouse_inside($e)) {
        } elsif ($self->on_double_click) {
            $self->on_double_click->();
        }
    } elsif ($e->LeftDown || $e->RightDown) {
        # If user pressed left or right button we first check whether this happened
        # on a volume or not.
        my $volume_idx = $self->_hover_volume_idx // -1;
        $self->_layer_height_edited(0);
        if ($object_idx_selected != -1 && $self->_variable_layer_thickness_bar_rect_mouse_inside($e)) {
            # A volume is selected and the mouse is hovering over a layer thickness bar.
            # Start editing the layer height.
            $self->_layer_height_edited(1);
            $self->_variable_layer_thickness_action($e);
        } elsif ($object_idx_selected != -1 && $self->_variable_layer_thickness_reset_rect_mouse_inside($e)) {
            $self->{print}->get_object($object_idx_selected)->reset_layer_height_profile;
            # Index 2 means no editing, just wait for mouse up event.
            $self->_layer_height_edited(2);
            $self->Refresh;
            $self->Update;
        } else {
            # Select volume in this 3D canvas.
            # Don't deselect a volume if layer editing is enabled. We want the object to stay selected
            # during the scene manipulation.
            if ($self->enable_picking && ($volume_idx != -1 || ! $self->layer_editing_enabled)) {
                $self->deselect_volumes;
                $self->select_volume($volume_idx);
                
                if ($volume_idx != -1) {
                    my $group_id = $self->volumes->[$volume_idx]->select_group_id;
                    my @volumes;
                    if ($group_id != -1) {
                        $self->select_volume($_)
                            for grep $self->volumes->[$_]->select_group_id == $group_id,
                            0..$#{$self->volumes};
                    }
                }
                
                $self->Refresh;
                $self->Update;
            }
            
            # propagate event through callback
            $self->on_select->($volume_idx)
                if $self->on_select;
            
            if ($volume_idx != -1) {
                if ($e->LeftDown && $self->enable_moving) {
                    # The mouse_to_3d gets the Z coordinate from the Z buffer at the screen coordinate $pos->x,y,
                    # an converts the screen space coordinate to unscaled object space.
                    my $pos3d = $self->mouse_to_3d(@$pos);
                    # Only accept the initial position, if it is inside the volume bounding box.
                    my $volume_bbox = $self->volumes->[$volume_idx]->transformed_bounding_box;
                    $volume_bbox->offset(1.);
                    if ($volume_bbox->contains_point($pos3d)) {
                        # The dragging operation is initiated.
                        $self->_drag_volume_idx($volume_idx);
                        $self->_drag_start_pos($pos3d);
                        # Remember the shift to to the object center. The object center will later be used
                        # to limit the object placement close to the bed.
                        $self->_drag_volume_center_offset($pos3d->vector_to($volume_bbox->center));
                    }
                } elsif ($e->RightDown) {
                    # if right clicking on volume, propagate event through callback
                    $self->on_right_click->($e->GetPosition)
                        if $self->on_right_click;
                }
            }
        }
    } elsif ($e->Dragging && $e->LeftIsDown && ! $self->_layer_height_edited && defined($self->_drag_volume_idx)) {
        # Get new position at the same Z of the initial click point.
        my $cur_pos = Slic3r::Linef3->new(
                $self->mouse_to_3d($e->GetX, $e->GetY, 0),
                $self->mouse_to_3d($e->GetX, $e->GetY, 1))
            ->intersect_plane($self->_drag_start_pos->z);
        # Clip the new position, so the object center remains close to the bed.
        {
            $cur_pos->translate(@{$self->_drag_volume_center_offset});
            my $cur_pos2 = Slic3r::Point->new(scale($cur_pos->x), scale($cur_pos->y));
            if (! $self->bed_polygon->contains_point($cur_pos2)) {
                my $ip = $self->bed_polygon->point_projection($cur_pos2);
                $cur_pos->set_x(unscale($ip->x));
                $cur_pos->set_y(unscale($ip->y));
            }
            $cur_pos->translate(@{$self->_drag_volume_center_offset->negative});
        }
        # Calculate the translation vector.
        my $vector = $self->_drag_start_pos->vector_to($cur_pos);
        # Get the volume being dragged.
        my $volume = $self->volumes->[$self->_drag_volume_idx];
        # Get all volumes belonging to the same group, if any.
        my @volumes = ($volume->drag_group_id == -1) ?
            ($volume) :
            grep $_->drag_group_id == $volume->drag_group_id, @{$self->volumes};
        # Apply new temporary volume origin and ignore Z.
        $_->translate($vector->x, $vector->y, 0) for @volumes;
        $self->_drag_start_pos($cur_pos);
        $self->_dragged(1);
        $self->Refresh;
        $self->Update;
    } elsif ($e->Dragging) {
        if ($self->_layer_height_edited && $object_idx_selected != -1) {
            $self->_variable_layer_thickness_action($e) if ($self->_layer_height_edited == 1);
        } elsif ($e->LeftIsDown) {
            # if dragging over blank area with left button, rotate
            if (defined $self->_drag_start_pos) {
                my $orig = $self->_drag_start_pos;
                if (TURNTABLE_MODE) {
                    # Turntable mode is enabled by default.
                    $self->_sphi($self->_sphi + ($pos->x - $orig->x) * TRACKBALLSIZE);
                    $self->_stheta($self->_stheta - ($pos->y - $orig->y) * TRACKBALLSIZE);        #-
                    $self->_stheta(GIMBALL_LOCK_THETA_MAX) if $self->_stheta > GIMBALL_LOCK_THETA_MAX;
                    $self->_stheta(0) if $self->_stheta < 0;
                } else {
                    my $size = $self->GetClientSize;
                    my @quat = trackball(
                        $orig->x / ($size->width / 2) - 1,
                        1 - $orig->y / ($size->height / 2),       #/
                        $pos->x / ($size->width / 2) - 1,
                        1 - $pos->y / ($size->height / 2),        #/
                    );
                    $self->_quat(mulquats($self->_quat, \@quat));
                }
                $self->on_viewport_changed->() if $self->on_viewport_changed;
                $self->Refresh;
                $self->Update;
            }
            $self->_drag_start_pos($pos);
        } elsif ($e->MiddleIsDown || $e->RightIsDown) {
            # If dragging over blank area with right button, pan.
            if (defined $self->_drag_start_xy) {
                # get point in model space at Z = 0
                my $cur_pos = $self->mouse_to_3d($e->GetX, $e->GetY, 0);
                my $orig    = $self->mouse_to_3d($self->_drag_start_xy->x, $self->_drag_start_xy->y, 0);
                $self->_camera_target->translate(@{$orig->vector_to($cur_pos)->negative});
                $self->on_viewport_changed->() if $self->on_viewport_changed;
                $self->Refresh;
                $self->Update;
            }
            $self->_drag_start_xy($pos);
        }
    } elsif ($e->LeftUp || $e->MiddleUp || $e->RightUp) {
        if ($self->_layer_height_edited) {
            $self->_layer_height_edited(undef);
            $self->{layer_height_edit_timer}->Stop;
            $self->on_model_update->()
                if ($object_idx_selected != -1 && $self->on_model_update);
        } elsif ($self->on_move && defined($self->_drag_volume_idx) && $self->_dragged) {
            # get all volumes belonging to the same group, if any
            my @volume_idxs;
            my $group_id = $self->volumes->[$self->_drag_volume_idx]->drag_group_id;
            if ($group_id == -1) {
                @volume_idxs = ($self->_drag_volume_idx);
            } else {
                @volume_idxs = grep $self->volumes->[$_]->drag_group_id == $group_id,
                    0..$#{$self->volumes};
            }
            $self->on_move->(@volume_idxs);
        }
        $self->_drag_volume_idx(undef);
        $self->_drag_start_pos(undef);
        $self->_drag_start_xy(undef);
        $self->_dragged(undef);
    } elsif ($e->Moving) {
        $self->_mouse_pos($pos);
        # Only refresh if picking is enabled, in that case the objects may get highlighted if the mouse cursor
        # hovers over.
        if ($self->enable_picking) {
            $self->Update;
            $self->Refresh;
        }
    } else {
        $e->Skip();
    }
}

sub mouse_wheel_event {
    my ($self, $e) = @_;

    if ($e->MiddleIsDown) {
        # Ignore the wheel events if the middle button is pressed.
        return;
    }
    
    if ($self->layer_editing_enabled && $self->{print}) {
        my $object_idx_selected = $self->_first_selected_object_id_for_variable_layer_height_editing;
        if ($object_idx_selected != -1) {
            # A volume is selected. Test, whether hovering over a layer thickness bar.
            if ($self->_variable_layer_thickness_bar_rect_mouse_inside($e)) {
                # Adjust the width of the selection.
                $self->{layer_height_edit_band_width} = max(min($self->{layer_height_edit_band_width} * (1 + 0.1 * $e->GetWheelRotation() / $e->GetWheelDelta()), 10.), 1.5);
                $self->Refresh;
                return;
            }
        }
    }

    # Calculate the zoom delta and apply it to the current zoom factor
    my $zoom = $e->GetWheelRotation() / $e->GetWheelDelta();
    $zoom = max(min($zoom, 4), -4);
    $zoom /= 10;
    $zoom = $self->_zoom / (1-$zoom);
    # Don't allow to zoom too far outside the scene.
    my $zoom_min = $self->get_zoom_to_bounding_box_factor($self->max_bounding_box);
    $zoom_min *= 0.4 if defined $zoom_min;
    $zoom = $zoom_min if defined $zoom_min && $zoom < $zoom_min;
    $self->_zoom($zoom);
    
    # In order to zoom around the mouse point we need to translate
    # the camera target
    my $size = Slic3r::Pointf->new($self->GetSizeWH);
    my $pos = Slic3r::Pointf->new($e->GetX, $size->y - $e->GetY); #-
    $self->_camera_target->translate(
        # ($pos - $size/2) represents the vector from the viewport center
        # to the mouse point. By multiplying it by $zoom we get the new,
        # transformed, length of such vector.
        # Since we want that point to stay fixed, we move our camera target
        # in the opposite direction by the delta of the length of such vector
        # ($zoom - 1). We then scale everything by 1/$self->_zoom since 
        # $self->_camera_target is expressed in terms of model units.
        -($pos->x - $size->x/2) * ($zoom) / $self->_zoom,
        -($pos->y - $size->y/2) * ($zoom) / $self->_zoom,
        0,
    ) if 0;
    $self->on_viewport_changed->() if $self->on_viewport_changed;
    $self->Resize($self->GetSizeWH) if $self->IsShownOnScreen;
    $self->Refresh;
}

# Reset selection.
sub reset_objects {
    my ($self) = @_;
    if ($self->GetContext) {
        $self->SetCurrent($self->GetContext);
        $self->volumes->release_geometry;
    }
    $self->volumes->erase;
    $self->_dirty(1);
}

# Setup camera to view all objects.
sub set_viewport_from_scene {
    my ($self, $scene) = @_;
    
    $self->_sphi($scene->_sphi);
    $self->_stheta($scene->_stheta);
    $self->_camera_target($scene->_camera_target);
    $self->_zoom($scene->_zoom);
    $self->_quat($scene->_quat);
    $self->_dirty(1);
}

# Set the camera to a default orientation,
# zoom to volumes.
sub select_view {
    my ($self, $direction) = @_;
    my $dirvec;
    if (ref($direction)) {
        $dirvec = $direction;
    } else {
        if ($direction eq 'iso') {
            $dirvec = VIEW_DEFAULT;
        } elsif ($direction eq 'left') {
            $dirvec = VIEW_LEFT;
        } elsif ($direction eq 'right') {
            $dirvec = VIEW_RIGHT;
        } elsif ($direction eq 'top') {
            $dirvec = VIEW_TOP;
        } elsif ($direction eq 'bottom') {
            $dirvec = VIEW_BOTTOM;
        } elsif ($direction eq 'front') {
            $dirvec = VIEW_FRONT;
        } elsif ($direction eq 'rear') {
            $dirvec = VIEW_REAR;
        }
    }
    my $bb = $self->volumes_bounding_box;
    if (! $bb->empty) {
        $self->_sphi($dirvec->[0]);
        $self->_stheta($dirvec->[1]);
        # Avoid gimball lock.
        $self->_stheta(GIMBALL_LOCK_THETA_MAX) if $self->_stheta > GIMBALL_LOCK_THETA_MAX;
        $self->_stheta(0) if $self->_stheta < 0;
        # View everything.
        $self->zoom_to_bounding_box($bb);
        $self->on_viewport_changed->() if $self->on_viewport_changed;
        $self->Refresh;
    }
}

sub get_zoom_to_bounding_box_factor {
    my ($self, $bb) = @_;
    return undef if ($bb->empty);
    my $max_size = max(@{$bb->size}) * 2;
    return ($max_size == 0) ? undef : min($self->GetSizeWH) / $max_size;
}

sub zoom_to_bounding_box {
    my ($self, $bb) = @_;
    # Calculate the zoom factor needed to adjust viewport to bounding box.
    my $zoom = $self->get_zoom_to_bounding_box_factor($bb);
    if (defined $zoom) {
        $self->_zoom($zoom);
        # center view around bounding box center
        $self->_camera_target($bb->center);
        $self->on_viewport_changed->() if $self->on_viewport_changed;
    }
}

sub zoom_to_bed {
    my ($self) = @_;
    
    if ($self->bed_shape) {
        $self->zoom_to_bounding_box($self->bed_bounding_box);
    }
}

sub zoom_to_volume {
    my ($self, $volume_idx) = @_;
    
    my $volume = $self->volumes->[$volume_idx];
    my $bb = $volume->transformed_bounding_box;
    $self->zoom_to_bounding_box($bb);
}

sub zoom_to_volumes {
    my ($self) = @_;
    $self->zoom_to_bounding_box($self->volumes_bounding_box);
}

sub volumes_bounding_box {
    my ($self) = @_;
    
    my $bb = Slic3r::Geometry::BoundingBoxf3->new;
    $bb->merge($_->transformed_bounding_box) for @{$self->volumes};
    return $bb;
}

sub bed_bounding_box {
    my ($self) = @_;
    
    my $bb = Slic3r::Geometry::BoundingBoxf3->new;
    if ($self->bed_shape) {
        $bb->merge_point(Slic3r::Pointf3->new(@$_, 0)) for @{$self->bed_shape};
    }
    return $bb;
}

sub max_bounding_box {
    my ($self) = @_;
    
    my $bb = $self->bed_bounding_box;
    $bb->merge($self->volumes_bounding_box);
    return $bb;
}

# Used by ObjectCutDialog and ObjectPartsPanel to generate a rectangular ground plane
# to support the scene objects.
sub set_auto_bed_shape {
    my ($self, $bed_shape) = @_;
    
    # draw a default square bed around object center
    my $max_size = max(@{ $self->volumes_bounding_box->size });
    my $center = $self->volumes_bounding_box->center;
    $self->set_bed_shape([
        [ $center->x - $max_size, $center->y - $max_size ],  #--
        [ $center->x + $max_size, $center->y - $max_size ],  #--
        [ $center->x + $max_size, $center->y + $max_size ],  #++
        [ $center->x - $max_size, $center->y + $max_size ],  #++
    ]);
    # Set the origin for painting of the coordinate system axes.
    $self->origin(Slic3r::Pointf->new(@$center[X,Y]));
}

# Set the bed shape to a single closed 2D polygon (array of two element arrays),
# triangulate the bed and store the triangles into $self->bed_triangles,
# fills the $self->bed_grid_lines and sets $self->origin.
# Sets $self->bed_polygon to limit the object placement.
sub set_bed_shape {
    my ($self, $bed_shape) = @_;
    
    $self->bed_shape($bed_shape);
    
    # triangulate bed
    my $expolygon = Slic3r::ExPolygon->new([ map [map scale($_), @$_], @$bed_shape ]);
    my $bed_bb = $expolygon->bounding_box;
    
    {
        my @points = ();
        foreach my $triangle (@{ $expolygon->triangulate }) {
            push @points, map {+ unscale($_->x), unscale($_->y), GROUND_Z } @$triangle;
        }
        $self->bed_triangles(OpenGL::Array->new_list(GL_FLOAT, @points));
    }
    
    {
        my @polylines = ();
        for (my $x = $bed_bb->x_min; $x <= $bed_bb->x_max; $x += scale 10) {
            push @polylines, Slic3r::Polyline->new([$x,$bed_bb->y_min], [$x,$bed_bb->y_max]);
        }
        for (my $y = $bed_bb->y_min; $y <= $bed_bb->y_max; $y += scale 10) {
            push @polylines, Slic3r::Polyline->new([$bed_bb->x_min,$y], [$bed_bb->x_max,$y]);
        }
        # clip with a slightly grown expolygon because our lines lay on the contours and
        # may get erroneously clipped
        my @lines = map Slic3r::Line->new(@$_[0,-1]),
            @{intersection_pl(\@polylines, [ @{$expolygon->offset(+scaled_epsilon)} ])};
        
        # append bed contours
        push @lines, map @{$_->lines}, @$expolygon;
        
        my @points = ();
        foreach my $line (@lines) {
            push @points, map {+ unscale($_->x), unscale($_->y), GROUND_Z } @$line;  #))
        }
        $self->bed_grid_lines(OpenGL::Array->new_list(GL_FLOAT, @points));
    }
    
    # Set the origin for painting of the coordinate system axes.
    $self->origin(Slic3r::Pointf->new(0,0));

    $self->bed_polygon(offset_ex([$expolygon->contour], $bed_bb->radius * 1.7, JT_ROUND, scale(0.5))->[0]->contour->clone);
}

sub deselect_volumes {
    my ($self) = @_;
    $_->set_selected(0) for @{$self->volumes};
}

sub select_volume {
    my ($self, $volume_idx) = @_;
    $self->volumes->[$volume_idx]->set_selected(1)
        if $volume_idx != -1;
}

sub SetCuttingPlane {
    my ($self, $z, $expolygons) = @_;
    
    $self->cutting_plane_z($z);
    
    # grow slices in order to display them better
    $expolygons = offset_ex([ map @$_, @$expolygons ], scale 0.1);
    
    my @verts = ();
    foreach my $line (map @{$_->lines}, map @$_, @$expolygons) {
        push @verts, (
            unscale($line->a->x), unscale($line->a->y), $z,  #))
            unscale($line->b->x), unscale($line->b->y), $z,  #))
        );
    }
    $self->cut_lines_vertices(OpenGL::Array->new_list(GL_FLOAT, @verts));
}

# Given an axis and angle, compute quaternion.
sub axis_to_quat {
    my ($ax, $phi) = @_;
    
    my $lena = sqrt(reduce { $a + $b } (map { $_ * $_ } @$ax));
    my @q = map { $_ * (1 / $lena) } @$ax;
    @q = map { $_ * sin($phi / 2.0) } @q;
    $q[$#q + 1] = cos($phi / 2.0);
    return @q;
}

# Project a point on the virtual trackball. 
# If it is inside the sphere, map it to the sphere, if it outside map it
# to a hyperbola.
sub project_to_sphere {
    my ($r, $x, $y) = @_;
    
    my $d = sqrt($x * $x + $y * $y);
    if ($d < $r * 0.70710678118654752440) {     # Inside sphere
        return sqrt($r * $r - $d * $d);
    } else {                                    # On hyperbola
        my $t = $r / 1.41421356237309504880;
        return $t * $t / $d;
    }
}

sub cross {
    my ($v1, $v2) = @_;
  
    return (@$v1[1] * @$v2[2] - @$v1[2] * @$v2[1],
            @$v1[2] * @$v2[0] - @$v1[0] * @$v2[2],
            @$v1[0] * @$v2[1] - @$v1[1] * @$v2[0]);
}

# Simulate a track-ball. Project the points onto the virtual trackball, 
# then figure out the axis of rotation, which is the cross product of 
# P1 P2 and O P1 (O is the center of the ball, 0,0,0) Note: This is a 
# deformed trackball-- is a trackball in the center, but is deformed 
# into a hyperbolic sheet of rotation away from the center. 
# It is assumed that the arguments to this routine are in the range 
# (-1.0 ... 1.0).
sub trackball {
    my ($p1x, $p1y, $p2x, $p2y) = @_;
    
    if ($p1x == $p2x && $p1y == $p2y) {
        # zero rotation
        return (0.0, 0.0, 0.0, 1.0);
    }
    
    # First, figure out z-coordinates for projection of P1 and P2 to
    # deformed sphere
    my @p1 = ($p1x, $p1y, project_to_sphere(TRACKBALLSIZE, $p1x, $p1y));
    my @p2 = ($p2x, $p2y, project_to_sphere(TRACKBALLSIZE, $p2x, $p2y));
    
    # axis of rotation (cross product of P1 and P2)
    my @a = cross(\@p2, \@p1);

    # Figure out how much to rotate around that axis.
    my @d = map { $_ * $_ } (map { $p1[$_] - $p2[$_] } 0 .. $#p1);
    my $t = sqrt(reduce { $a + $b } @d) / (2.0 * TRACKBALLSIZE);
    
    # Avoid problems with out-of-control values...
    $t = 1.0 if ($t > 1.0);
    $t = -1.0 if ($t < -1.0);
    my $phi = 2.0 * asin($t);

    return axis_to_quat(\@a, $phi);
}

# Build a rotation matrix, given a quaternion rotation.
sub quat_to_rotmatrix {
    my ($q) = @_;
  
    my @m = ();
  
    $m[0] = 1.0 - 2.0 * (@$q[1] * @$q[1] + @$q[2] * @$q[2]);
    $m[1] = 2.0 * (@$q[0] * @$q[1] - @$q[2] * @$q[3]);
    $m[2] = 2.0 * (@$q[2] * @$q[0] + @$q[1] * @$q[3]);
    $m[3] = 0.0;

    $m[4] = 2.0 * (@$q[0] * @$q[1] + @$q[2] * @$q[3]);
    $m[5] = 1.0 - 2.0 * (@$q[2] * @$q[2] + @$q[0] * @$q[0]);
    $m[6] = 2.0 * (@$q[1] * @$q[2] - @$q[0] * @$q[3]);
    $m[7] = 0.0;

    $m[8] = 2.0 * (@$q[2] * @$q[0] - @$q[1] * @$q[3]);
    $m[9] = 2.0 * (@$q[1] * @$q[2] + @$q[0] * @$q[3]);
    $m[10] = 1.0 - 2.0 * (@$q[1] * @$q[1] + @$q[0] * @$q[0]);
    $m[11] = 0.0;

    $m[12] = 0.0;
    $m[13] = 0.0;
    $m[14] = 0.0;
    $m[15] = 1.0;
  
    return @m;
}

sub mulquats {
    my ($q1, $rq) = @_;
  
    return (@$q1[3] * @$rq[0] + @$q1[0] * @$rq[3] + @$q1[1] * @$rq[2] - @$q1[2] * @$rq[1],
            @$q1[3] * @$rq[1] + @$q1[1] * @$rq[3] + @$q1[2] * @$rq[0] - @$q1[0] * @$rq[2],
            @$q1[3] * @$rq[2] + @$q1[2] * @$rq[3] + @$q1[0] * @$rq[1] - @$q1[1] * @$rq[0],
            @$q1[3] * @$rq[3] - @$q1[0] * @$rq[0] - @$q1[1] * @$rq[1] - @$q1[2] * @$rq[2])
}

# Convert the screen space coordinate to an object space coordinate.
# If the Z screen space coordinate is not provided, a depth buffer value is substituted.
sub mouse_to_3d {
    my ($self, $x, $y, $z) = @_;

    my @viewport    = glGetIntegerv_p(GL_VIEWPORT);             # 4 items
    my @mview       = glGetDoublev_p(GL_MODELVIEW_MATRIX);      # 16 items
    my @proj        = glGetDoublev_p(GL_PROJECTION_MATRIX);     # 16 items
    
    $y = $viewport[3] - $y;
    $z //= glReadPixels_p($x, $y, 1, 1, GL_DEPTH_COMPONENT, GL_FLOAT);
    my @projected = gluUnProject_p($x, $y, $z, @mview, @proj, @viewport);
    return Slic3r::Pointf3->new(@projected);
}

sub GetContext {
    my ($self) = @_;
    return $self->{context} ||= Wx::GLContext->new($self);
}
 
sub SetCurrent {
    my ($self, $context) = @_;
    return $self->SUPER::SetCurrent($context);
}

sub UseVBOs {
    my ($self) = @_;

    if (! defined ($self->{use_VBOs})) {
        my $use_legacy = wxTheApp->{app_config}->get('use_legacy_opengl');
        if ($use_legacy eq '1') {
            # Disable OpenGL 2.0 rendering.
            $self->{use_VBOs} = 0;
            # Don't enable the layer editing tool.
            $self->{layer_editing_enabled} = 0;
            # 2 means failed
            $self->{layer_editing_initialized} = 2;
            return 0;
        }
        # This is a special path for wxWidgets on GTK, where an OpenGL context is initialized
        # first when an OpenGL widget is shown for the first time. How ugly.
        return 0 if (! $self->init && $^O eq 'linux');
        # Don't use VBOs if anything fails.
        $self->{use_VBOs} = 0;
        if ($self->GetContext) {
            $self->SetCurrent($self->GetContext);
            Slic3r::GUI::_3DScene::_glew_init;
            my @gl_version = split(/\./, glGetString(GL_VERSION));
            $self->{use_VBOs} = int($gl_version[0]) >= 2;
            # print "UseVBOs $self OpenGL major: $gl_version[0], minor: $gl_version[1]. Use VBOs: ", $self->{use_VBOs}, "\n";
        }
    }
    return $self->{use_VBOs};
}

sub Resize {
    my ($self, $x, $y) = @_;
 
    return unless $self->GetContext;
    $self->_dirty(0);
    
    $self->SetCurrent($self->GetContext);
    glViewport(0, 0, $x, $y);
 
    $x /= $self->_zoom;
    $y /= $self->_zoom;
    
    glMatrixMode(GL_PROJECTION);
    glLoadIdentity();
    if ($self->_camera_type eq 'ortho') {
        #FIXME setting the size of the box 10x larger than necessary
        # is only a workaround for an incorrectly set camera.
        # This workaround harms Z-buffer accuracy!
#        my $depth = 1.05 * $self->max_bounding_box->radius(); 
       my $depth = 10.0 * $self->max_bounding_box->radius();
        glOrtho(
            -$x/2, $x/2, -$y/2, $y/2,
            -$depth, $depth,
        );
    } else {
        die "Invalid camera type: ", $self->_camera_type, "\n" if ($self->_camera_type ne 'perspective');
        my $bbox_r = $self->max_bounding_box->radius();
        my $fov = PI * 45. / 180.;
        my $fov_tan = tan(0.5 * $fov);
        my $cam_distance = 0.5 * $bbox_r / $fov_tan;
        $self->_camera_distance($cam_distance);
        my $nr = $cam_distance - $bbox_r * 1.1;
        my $fr = $cam_distance + $bbox_r * 1.1;
        $nr = 1 if ($nr < 1);
        $fr = $nr + 1 if ($fr < $nr + 1);
        my $h2 = $fov_tan * $nr;
        my $w2 = $h2 * $x / $y;
        glFrustum(-$w2, $w2, -$h2, $h2, $nr, $fr);        
    }

    glMatrixMode(GL_MODELVIEW);
}

sub InitGL {
    my $self = shift;
 
    return if $self->init;
    return unless $self->GetContext;
    $self->init(1);

    # This is a special path for wxWidgets on GTK, where an OpenGL context is initialized
    # first when an OpenGL widget is shown for the first time. How ugly.
    # In that case the volumes are wainting to be moved to Vertex Buffer Objects
    # after the OpenGL context is being initialized.
    $self->volumes->finalize_geometry(1) 
        if ($^O eq 'linux' && $self->UseVBOs);

    glClearColor(0, 0, 0, 1);
    glColor3f(1, 0, 0);
    glEnable(GL_DEPTH_TEST);
    glClearDepth(1.0);
    glDepthFunc(GL_LEQUAL);
    glEnable(GL_CULL_FACE);
    glEnable(GL_BLEND);
    glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
    
    # Set antialiasing/multisampling
    glDisable(GL_LINE_SMOOTH);
    glDisable(GL_POLYGON_SMOOTH);

    # See "GL_MULTISAMPLE and GL_ARRAY_BUFFER_ARB messages on failed launch"
    # https://github.com/alexrj/Slic3r/issues/4085
    eval {
        # Disable the multi sampling by default, so the picking by color will work correctly.
        glDisable(GL_MULTISAMPLE);
    };
    # Disable multi sampling if the eval failed.
    $self->{can_multisample} = 0 if $@;
    
    # ambient lighting
    glLightModelfv_p(GL_LIGHT_MODEL_AMBIENT, 0.3, 0.3, 0.3, 1);
    
    glEnable(GL_LIGHTING);
    glEnable(GL_LIGHT0);
    glEnable(GL_LIGHT1);
    
    # light from camera
    glLightfv_p(GL_LIGHT1, GL_POSITION, 1, 0, 1, 0);
    glLightfv_p(GL_LIGHT1, GL_SPECULAR, 0.3, 0.3, 0.3, 1);
    glLightfv_p(GL_LIGHT1, GL_DIFFUSE,  0.2, 0.2, 0.2, 1);
    
    # Enables Smooth Color Shading; try GL_FLAT for (lack of) fun.
    glShadeModel(GL_SMOOTH);
    
#    glMaterialfv_p(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, 0.5, 0.3, 0.3, 1);
#    glMaterialfv_p(GL_FRONT_AND_BACK, GL_SPECULAR, 1, 1, 1, 1);
#    glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, 50);
#    glMaterialfv_p(GL_FRONT_AND_BACK, GL_EMISSION, 0.1, 0, 0, 0.9);
    
    # A handy trick -- have surface material mirror the color.
    glColorMaterial(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE);
    glEnable(GL_COLOR_MATERIAL);
    glEnable(GL_MULTISAMPLE) if ($self->{can_multisample});

    if ($self->UseVBOs) {
        my $shader = new Slic3r::GUI::_3DScene::GLShader;
        if (! $shader->load($self->_fragment_shader_Gouraud, $self->_vertex_shader_Gouraud)) {
#        if (! $shader->load($self->_fragment_shader_Phong, $self->_vertex_shader_Phong)) {
            print "Compilaton of path shader failed: \n" . $shader->last_error . "\n";
            $shader = undef;
        } else {
            $self->{plain_shader} = $shader;
        }
    }
}

sub DestroyGL {
    my $self = shift;
    if ($self->GetContext) {
        $self->SetCurrent($self->GetContext);
        if ($self->{plain_shader}) {
            $self->{plain_shader}->release;
            delete $self->{plain_shader};
        }
        if ($self->{layer_height_edit_shader}) {
            $self->{layer_height_edit_shader}->release;
            delete $self->{layer_height_edit_shader};
        }
        $self->volumes->release_geometry;
    }
}

sub Render {
    my ($self, $dc) = @_;
    
    # prevent calling SetCurrent() when window is not shown yet
    return unless $self->IsShownOnScreen;
    return unless my $context = $self->GetContext;
    $self->SetCurrent($context);
    $self->InitGL;
    
    glClearColor(1, 1, 1, 1);
    glClearDepth(1);
    glDepthFunc(GL_LESS);
    glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
    
    glMatrixMode(GL_MODELVIEW);
    glLoadIdentity();

    {
        # Shift the perspective camera.
        my $camera_pos = Slic3r::Pointf3->new(0,0,-$self->_camera_distance);
        glTranslatef(@$camera_pos);
    }
    
    if (TURNTABLE_MODE) {
        # Turntable mode is enabled by default.
        glRotatef(-$self->_stheta, 1, 0, 0); # pitch
        glRotatef($self->_sphi, 0, 0, 1);    # yaw
    } else {
        my @rotmat = quat_to_rotmatrix($self->quat);
        glMultMatrixd_p(@rotmat[0..15]);
    }
    glTranslatef(@{ $self->_camera_target->negative });
    
    # light from above
    glLightfv_p(GL_LIGHT0, GL_POSITION, -0.5, -0.5, 1, 0);
    glLightfv_p(GL_LIGHT0, GL_SPECULAR, 0.2, 0.2, 0.2, 1);
    glLightfv_p(GL_LIGHT0, GL_DIFFUSE,  0.5, 0.5, 0.5, 1);

    # Head light
    glLightfv_p(GL_LIGHT1, GL_POSITION, 1, 0, 1, 0);
    
    if ($self->enable_picking) {
        # Render the object for picking.
        # FIXME This cannot possibly work in a multi-sampled context as the color gets mangled by the anti-aliasing.
        # Better to use software ray-casting on a bounding-box hierarchy.
        glPushAttrib(GL_ENABLE_BIT);
        glDisable(GL_MULTISAMPLE) if ($self->{can_multisample});
        glDisable(GL_LIGHTING);
        glDisable(GL_BLEND);
        $self->draw_volumes(1);
        glFlush();
        glFinish();
        
        if (my $pos = $self->_mouse_pos) {
            my $col = [ glReadPixels_p($pos->x, $self->GetSize->GetHeight - $pos->y, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE) ];
            my $volume_idx = $col->[0] + $col->[1]*256 + $col->[2]*256*256;
            $self->_hover_volume_idx(undef);
            $_->set_hover(0) for @{$self->volumes};
            if ($volume_idx <= $#{$self->volumes}) {
                $self->_hover_volume_idx($volume_idx);
                
                $self->volumes->[$volume_idx]->set_hover(1);
                my $group_id = $self->volumes->[$volume_idx]->select_group_id;
                if ($group_id != -1) {
                    $_->set_hover(1) for grep { $_->select_group_id == $group_id } @{$self->volumes};
                }
                
                $self->on_hover->($volume_idx) if $self->on_hover;
            }
        }
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
        glFlush();
        glFinish();
        glPopAttrib();
    }
    
    # draw fixed background
    if ($self->background) {
        glDisable(GL_LIGHTING);
        glPushMatrix();
        glLoadIdentity();
        
        glMatrixMode(GL_PROJECTION);
        glPushMatrix();
        glLoadIdentity();
        
        # Draws a bluish bottom to top gradient over the complete screen.
        glDisable(GL_DEPTH_TEST);
        glBegin(GL_QUADS);
        glColor3f(0.0,0.0,0.0);
        glVertex3f(-1.0,-1.0, 1.0);
        glVertex3f( 1.0,-1.0, 1.0);
        glColor3f(10/255,98/255,144/255);
        glVertex3f( 1.0, 1.0, 1.0);
        glVertex3f(-1.0, 1.0, 1.0);
        glEnd();
        glPopMatrix();
        glEnable(GL_DEPTH_TEST);
        
        glMatrixMode(GL_MODELVIEW);
        glPopMatrix();
        glEnable(GL_LIGHTING);
    }
    
    # draw ground and axes
    glDisable(GL_LIGHTING);
    
    # draw ground
    my $ground_z = GROUND_Z;
    if ($self->bed_triangles) {
        glDisable(GL_DEPTH_TEST);
        
        glEnable(GL_BLEND);
        glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
        
        glEnableClientState(GL_VERTEX_ARRAY);
        glColor4f(0.8, 0.6, 0.5, 0.4);
        glNormal3d(0,0,1);
        glVertexPointer_c(3, GL_FLOAT, 0, $self->bed_triangles->ptr());
        glDrawArrays(GL_TRIANGLES, 0, $self->bed_triangles->elements / 3);
        glDisableClientState(GL_VERTEX_ARRAY);
        
        # we need depth test for grid, otherwise it would disappear when looking
        # the object from below
        glEnable(GL_DEPTH_TEST);
    
        # draw grid
        glLineWidth(3);
        glColor4f(0.2, 0.2, 0.2, 0.4);
        glEnableClientState(GL_VERTEX_ARRAY);
        glVertexPointer_c(3, GL_FLOAT, 0, $self->bed_grid_lines->ptr());
        glDrawArrays(GL_LINES, 0, $self->bed_grid_lines->elements / 3);
        glDisableClientState(GL_VERTEX_ARRAY);
        
        glDisable(GL_BLEND);
    }
    
    my $volumes_bb = $self->volumes_bounding_box;
    
    {
        # draw axes
        # disable depth testing so that axes are not covered by ground
        glDisable(GL_DEPTH_TEST);
        my $origin = $self->origin;
        my $axis_len = max(
            0.3 * max(@{ $self->bed_bounding_box->size }),
              2 * max(@{ $volumes_bb->size }),
        );
        glLineWidth(2);
        glBegin(GL_LINES);
        # draw line for x axis
        glColor3f(1, 0, 0);
        glVertex3f(@$origin, $ground_z);
        glVertex3f($origin->x + $axis_len, $origin->y, $ground_z);  #,,
        # draw line for y axis
        glColor3f(0, 1, 0);
        glVertex3f(@$origin, $ground_z);
        glVertex3f($origin->x, $origin->y + $axis_len, $ground_z);  #++
        glEnd();
        # draw line for Z axis
        # (re-enable depth test so that axis is correctly shown when objects are behind it)
        glEnable(GL_DEPTH_TEST);
        glBegin(GL_LINES);
        glColor3f(0, 0, 1);
        glVertex3f(@$origin, $ground_z);
        glVertex3f(@$origin, $ground_z+$axis_len);
        glEnd();
    }
    
    glEnable(GL_LIGHTING);
    
    # draw objects
    if (! $self->use_plain_shader) {
        $self->draw_volumes;
    } elsif ($self->UseVBOs) {
        $self->{plain_shader}->enable if $self->{plain_shader};
        $self->volumes->render_VBOs;
        $self->{plain_shader}->disable;
    } else {
        $self->volumes->render_legacy;
    }

    # draw cutting plane
    if (defined $self->cutting_plane_z) {
        my $plane_z = $self->cutting_plane_z;
        my $bb = $volumes_bb;
        glDisable(GL_CULL_FACE);
        glDisable(GL_LIGHTING);
        glEnable(GL_BLEND);
        glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
        glBegin(GL_QUADS);
        glColor4f(0.8, 0.8, 0.8, 0.5);
        glVertex3f($bb->x_min-20, $bb->y_min-20, $plane_z);
        glVertex3f($bb->x_max+20, $bb->y_min-20, $plane_z);
        glVertex3f($bb->x_max+20, $bb->y_max+20, $plane_z);
        glVertex3f($bb->x_min-20, $bb->y_max+20, $plane_z);
        glEnd();
        glEnable(GL_CULL_FACE);
        glDisable(GL_BLEND);
    }

    $self->draw_active_object_annotations;
    
    $self->SwapBuffers();

    # Calling glFinish has a performance penalty, but it seems to fix some OpenGL driver hang-up with extremely large scenes.
#    glFinish();
}

sub draw_volumes {
    # $fakecolor is a boolean indicating, that the objects shall be rendered in a color coding the object index for picking.
    my ($self, $fakecolor) = @_;
    
    glEnable(GL_BLEND);
    glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
    
    glEnableClientState(GL_VERTEX_ARRAY);
    glEnableClientState(GL_NORMAL_ARRAY);
    
    my $z_cursor_relative = $self->_variable_layer_thickness_bar_mouse_cursor_z_relative;
    foreach my $volume_idx (0..$#{$self->volumes}) {
        my $volume = $self->volumes->[$volume_idx];

        my $shader_active = 0;
        my $object_id = int($volume->select_group_id / 1000000);
        if ($self->layer_editing_enabled && ! $fakecolor && $volume->selected && $self->{layer_height_edit_shader} && 
            $volume->has_layer_height_texture && $object_id < $self->{print}->object_count) {
            # Update the height texture if the ModelObject::layer_height_texture is invalid.
            $volume->generate_layer_height_texture($self->{print}->get_object($object_id), 0);
            $self->{layer_height_edit_shader}->enable;
            $self->{layer_height_edit_shader}->set_uniform('z_to_texture_row',            $volume->layer_height_texture_z_to_row_id);
            $self->{layer_height_edit_shader}->set_uniform('z_texture_row_to_normalized', 1. / $volume->layer_height_texture_height);
            $self->{layer_height_edit_shader}->set_uniform('z_cursor',                    $volume->bounding_box->z_max * $z_cursor_relative);
            $self->{layer_height_edit_shader}->set_uniform('z_cursor_band_width',         $self->{layer_height_edit_band_width});
            glBindTexture(GL_TEXTURE_2D, $self->{layer_preview_z_texture_id});
#            glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_LEVEL, 0);
#            glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 1);
            glTexImage2D_c(GL_TEXTURE_2D, 0, GL_RGBA8, $volume->layer_height_texture_width, $volume->layer_height_texture_height, 
                0, GL_RGBA, GL_UNSIGNED_BYTE, 0);
            glTexImage2D_c(GL_TEXTURE_2D, 1, GL_RGBA8, $volume->layer_height_texture_width / 2, $volume->layer_height_texture_height / 2,
                0, GL_RGBA, GL_UNSIGNED_BYTE, 0);
#                glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
#                glPixelStorei(GL_UNPACK_ROW_LENGTH, $self->{layer_preview_z_texture_width});
            glTexSubImage2D_c(GL_TEXTURE_2D, 0, 0, 0, $volume->layer_height_texture_width, $volume->layer_height_texture_height,
                GL_RGBA, GL_UNSIGNED_BYTE, $volume->layer_height_texture_data_ptr_level0);
            glTexSubImage2D_c(GL_TEXTURE_2D, 1, 0, 0, $volume->layer_height_texture_width / 2, $volume->layer_height_texture_height / 2,
                GL_RGBA, GL_UNSIGNED_BYTE, $volume->layer_height_texture_data_ptr_level1);
            $shader_active = 1;
        } elsif ($fakecolor) {
            # Object picking mode. Render the object with a color encoding the object index.
            my $r = ($volume_idx & 0x000000FF) >>  0;
            my $g = ($volume_idx & 0x0000FF00) >>  8;
            my $b = ($volume_idx & 0x00FF0000) >> 16;
            glColor4f($r/255.0, $g/255.0, $b/255.0, 1);
        } elsif ($volume->selected) {
            glColor4f(@{ &SELECTED_COLOR });
        } elsif ($volume->hover) {
            glColor4f(@{ &HOVER_COLOR });
        } else {
            glColor4f(@{ $volume->color });
        }

        $volume->render;

        if ($shader_active) {
            glBindTexture(GL_TEXTURE_2D, 0);
            $self->{layer_height_edit_shader}->disable;
        }
    }
    glDisableClientState(GL_NORMAL_ARRAY);
    glDisable(GL_BLEND);
    
    if (defined $self->cutting_plane_z) {
        glLineWidth(2);
        glColor3f(0, 0, 0);
        glVertexPointer_c(3, GL_FLOAT, 0, $self->cut_lines_vertices->ptr());
        glDrawArrays(GL_LINES, 0, $self->cut_lines_vertices->elements / 3);
        glVertexPointer_c(3, GL_FLOAT, 0, 0);
    }
    glDisableClientState(GL_VERTEX_ARRAY);
}

sub _load_image_set_texture {
    my ($self, $file_name) = @_;
    # Load a PNG with an alpha channel.
    my $img = Wx::Image->new;
    $img->LoadFile(Slic3r::var($file_name), wxBITMAP_TYPE_PNG);
    # Get RGB & alpha raw data from wxImage, interleave them into a Perl array.
    my @rgb = unpack 'C*', $img->GetData();
    my @alpha = $img->HasAlpha ? unpack 'C*', $img->GetAlpha() : (255) x (int(@rgb) / 3);
    my $n_pixels = int(@alpha);
    my @data = (0)x($n_pixels * 4);
    for (my $i = 0; $i < $n_pixels; $i += 1) {
        $data[$i*4  ] = $rgb[$i*3];
        $data[$i*4+1] = $rgb[$i*3+1];
        $data[$i*4+2] = $rgb[$i*3+2];
        $data[$i*4+3] = $alpha[$i];
    }
    # Initialize a raw bitmap data.
    my $params = {
        loaded => 1,
        valid  => $n_pixels > 0,
        width  => $img->GetWidth, 
        height => $img->GetHeight,
        data   => OpenGL::Array->new_list(GL_UNSIGNED_BYTE, @data),
        texture_id => glGenTextures_p(1)
    };
    # Create and initialize a texture with the raw data.
    glBindTexture(GL_TEXTURE_2D, $params->{texture_id});
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 1);
    glTexImage2D_c(GL_TEXTURE_2D, 0, GL_RGBA8, $params->{width}, $params->{height}, 0, GL_RGBA, GL_UNSIGNED_BYTE, $params->{data}->ptr);
    glBindTexture(GL_TEXTURE_2D, 0);
    return $params;
}

sub _variable_layer_thickness_load_overlay_image {
    my ($self) = @_;
    $self->{layer_preview_annotation} = $self->_load_image_set_texture('variable_layer_height_tooltip.png')
        if (! $self->{layer_preview_annotation}->{loaded});
    return $self->{layer_preview_annotation}->{valid};
}

sub _variable_layer_thickness_load_reset_image {
    my ($self) = @_;
    $self->{layer_preview_reset_image} = $self->_load_image_set_texture('variable_layer_height_reset.png')
        if (! $self->{layer_preview_reset_image}->{loaded});
    return $self->{layer_preview_reset_image}->{valid};
}

# Paint the tooltip.
sub _render_image {
    my ($self, $image, $l, $r, $b, $t) = @_;
    glColor4f(1.,1.,1.,1.);
    glDisable(GL_LIGHTING);
    glEnable(GL_BLEND);
    glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
    glEnable(GL_TEXTURE_2D);
    glBindTexture(GL_TEXTURE_2D, $image->{texture_id});
    glBegin(GL_QUADS);
    glTexCoord2d(0.,1.); glVertex3f($l, $b, 0);
    glTexCoord2d(1.,1.); glVertex3f($r, $b, 0);
    glTexCoord2d(1.,0.); glVertex3f($r, $t, 0);
    glTexCoord2d(0.,0.); glVertex3f($l, $t, 0);
    glEnd();
    glBindTexture(GL_TEXTURE_2D, 0);
    glDisable(GL_TEXTURE_2D);
    glDisable(GL_BLEND);
    glEnable(GL_LIGHTING);
}

sub draw_active_object_annotations {
    # $fakecolor is a boolean indicating, that the objects shall be rendered in a color coding the object index for picking.
    my ($self) = @_;

    return if (! $self->{layer_height_edit_shader} || ! $self->layer_editing_enabled);

    # Find the selected volume, over which the layer editing is active.
    my $volume;
    foreach my $volume_idx (0..$#{$self->volumes}) {
        my $v = $self->volumes->[$volume_idx];
        if ($v->selected && $v->has_layer_height_texture) {
            $volume = $v;
            last;
        }
    }
    return if (! $volume);
    
    # If the active object was not allocated at the Print, go away. This should only be a momentary case between an object addition / deletion
    # and an update by Platter::async_apply_config.
    my $object_idx = int($volume->select_group_id / 1000000);
    return if $object_idx >= $self->{print}->object_count;

    # The viewport and camera are set to complete view and glOrtho(-$x/2, $x/2, -$y/2, $y/2, -$depth, $depth), 
    # where x, y is the window size divided by $self->_zoom.
    my ($bar_left, $bar_bottom, $bar_right, $bar_top) = $self->_variable_layer_thickness_bar_rect_viewport;
    my ($reset_left, $reset_bottom, $reset_right, $reset_top) = $self->_variable_layer_thickness_reset_rect_viewport;
    my $z_cursor_relative = $self->_variable_layer_thickness_bar_mouse_cursor_z_relative;

    $self->{layer_height_edit_shader}->enable;
    $self->{layer_height_edit_shader}->set_uniform('z_to_texture_row',            $volume->layer_height_texture_z_to_row_id);
    $self->{layer_height_edit_shader}->set_uniform('z_texture_row_to_normalized', 1. / $volume->layer_height_texture_height);
    $self->{layer_height_edit_shader}->set_uniform('z_cursor',                    $volume->bounding_box->z_max * $z_cursor_relative);
    $self->{layer_height_edit_shader}->set_uniform('z_cursor_band_width',         $self->{layer_height_edit_band_width});
    glBindTexture(GL_TEXTURE_2D, $self->{layer_preview_z_texture_id});
    glTexImage2D_c(GL_TEXTURE_2D, 0, GL_RGBA8, $volume->layer_height_texture_width, $volume->layer_height_texture_height, 
        0, GL_RGBA, GL_UNSIGNED_BYTE, 0);
    glTexImage2D_c(GL_TEXTURE_2D, 1, GL_RGBA8, $volume->layer_height_texture_width / 2, $volume->layer_height_texture_height / 2,
        0, GL_RGBA, GL_UNSIGNED_BYTE, 0);
    glTexSubImage2D_c(GL_TEXTURE_2D, 0, 0, 0, $volume->layer_height_texture_width, $volume->layer_height_texture_height,
        GL_RGBA, GL_UNSIGNED_BYTE, $volume->layer_height_texture_data_ptr_level0);
    glTexSubImage2D_c(GL_TEXTURE_2D, 1, 0, 0, $volume->layer_height_texture_width / 2, $volume->layer_height_texture_height / 2,
        GL_RGBA, GL_UNSIGNED_BYTE, $volume->layer_height_texture_data_ptr_level1);
    
    # Render the color bar.
    glDisable(GL_DEPTH_TEST);
    # The viewport and camera are set to complete view and glOrtho(-$x/2, $x/2, -$y/2, $y/2, -$depth, $depth), 
    # where x, y is the window size divided by $self->_zoom.
    glPushMatrix();
    glLoadIdentity();
    # Paint the overlay.
    glBegin(GL_QUADS);
    glVertex3f($bar_left,  $bar_bottom, 0);
    glVertex3f($bar_right, $bar_bottom, 0);
    glVertex3f($bar_right, $bar_top, $volume->bounding_box->z_max);
    glVertex3f($bar_left,  $bar_top, $volume->bounding_box->z_max);
    glEnd();
    glBindTexture(GL_TEXTURE_2D, 0);
    $self->{layer_height_edit_shader}->disable;

    # Paint the tooltip.
    if ($self->_variable_layer_thickness_load_overlay_image) {
        my $gap = 10/$self->_zoom;
        my ($l, $r, $b, $t) = ($bar_left - $self->{layer_preview_annotation}->{width}/$self->_zoom - $gap, $bar_left - $gap, $reset_bottom + $self->{layer_preview_annotation}->{height}/$self->_zoom + $gap, $reset_bottom + $gap);
        $self->_render_image($self->{layer_preview_annotation}, $l, $r, $t, $b);
    }

    # Paint the reset button.
    if ($self->_variable_layer_thickness_load_reset_image) {
        $self->_render_image($self->{layer_preview_reset_image}, $reset_left, $reset_right, $reset_bottom, $reset_top);
    }

    # Paint the graph.
    #FIXME show some kind of legend.
    my $print_object = $self->{print}->get_object($object_idx);
    my $max_z = unscale($print_object->size->z);
    my $profile = $print_object->model_object->layer_height_profile;
    my $layer_height = $print_object->config->get('layer_height');
    my $layer_height_max  = 10000000000.;
    {
        # Get a maximum layer height value.
        #FIXME This is a duplicate code of Slicing.cpp.
        my $nozzle_diameters  = $print_object->print->config->get('nozzle_diameter');
        my $layer_heights_min = $print_object->print->config->get('min_layer_height');
        my $layer_heights_max = $print_object->print->config->get('max_layer_height');
        for (my $i = 0; $i < scalar(@{$nozzle_diameters}); $i += 1) {
            my $lh_min = ($layer_heights_min->[$i] == 0.) ? 0.07 : max(0.01, $layer_heights_min->[$i]);
            my $lh_max = ($layer_heights_max->[$i] == 0.) ? (0.75 * $nozzle_diameters->[$i]) : $layer_heights_max->[$i];
            $layer_height_max = min($layer_height_max, max($lh_min, $lh_max));
        }
    }
    # Make the vertical bar a bit wider so the layer height curve does not touch the edge of the bar region.
    $layer_height_max *= 1.12;
    # Baseline
    glColor3f(0., 0., 0.);
    glBegin(GL_LINE_STRIP);
    glVertex2f($bar_left + $layer_height * ($bar_right - $bar_left) / $layer_height_max,  $bar_bottom);
    glVertex2f($bar_left + $layer_height * ($bar_right - $bar_left) / $layer_height_max,  $bar_top);
    glEnd();
    # Curve
    glColor3f(0., 0., 1.);
    glBegin(GL_LINE_STRIP);
    for (my $i = 0; $i < int(@{$profile}); $i += 2) {
        my $z = $profile->[$i];
        my $h = $profile->[$i+1];
        glVertex3f($bar_left + $h * ($bar_right - $bar_left) / $layer_height_max,  $bar_bottom + $z * ($bar_top - $bar_bottom) / $max_z, $z);
    }
    glEnd();
    # Revert the matrices.
    glPopMatrix();
    glEnable(GL_DEPTH_TEST);
}

sub opengl_info
{
    my ($self, %params) = @_;
    my %tag = Slic3r::tags($params{format});

    my $gl_version       = glGetString(GL_VERSION);
    my $gl_vendor        = glGetString(GL_VENDOR);
    my $gl_renderer      = glGetString(GL_RENDERER);
    my $glsl_version     = glGetString(GL_SHADING_LANGUAGE_VERSION);

    my $out = '';
    $out .= "$tag{h2start}OpenGL installation$tag{h2end}$tag{eol}";
    $out .= "  $tag{bstart}Using POGL$tag{bend} v$OpenGL::BUILD_VERSION$tag{eol}";
    $out .= "  $tag{bstart}GL version:   $tag{bend}${gl_version}$tag{eol}";
    $out .= "  $tag{bstart}vendor:       $tag{bend}${gl_vendor}$tag{eol}";
    $out .= "  $tag{bstart}renderer:     $tag{bend}${gl_renderer}$tag{eol}";
    $out .= "  $tag{bstart}GLSL version: $tag{bend}${glsl_version}$tag{eol}";

    # Check for other OpenGL extensions
    $out .= "$tag{h2start}Installed extensions (* implemented in the module):$tag{h2end}$tag{eol}";
    my $extensions = glGetString(GL_EXTENSIONS);
    my @extensions = split(' ',$extensions);
    foreach my $ext (sort @extensions) {
        my $stat = glpCheckExtension($ext);
        $out .= sprintf("%s ${ext}$tag{eol}", $stat?' ':'*');
        $out .= sprintf("    ${stat}$tag{eol}") if ($stat && $stat !~ m|^$ext |);
    }

    return $out;
}

sub _report_opengl_state
{
    my ($self, $comment) = @_;
    my $err = glGetError();
    return 0 if ($err == 0);
 
    # gluErrorString() hangs. Don't use it.
#    my $errorstr = gluErrorString();
    my $errorstr = '';
    if ($err == 0x0500) {
        $errorstr = 'GL_INVALID_ENUM';
    } elsif ($err == GL_INVALID_VALUE) {
        $errorstr = 'GL_INVALID_VALUE';
    } elsif ($err == GL_INVALID_OPERATION) {
        $errorstr = 'GL_INVALID_OPERATION';
    } elsif ($err == GL_STACK_OVERFLOW) {
        $errorstr = 'GL_STACK_OVERFLOW';
    } elsif ($err == GL_OUT_OF_MEMORY) {
        $errorstr = 'GL_OUT_OF_MEMORY';
    } else {        
        $errorstr = 'unknown';
    }
    if (defined($comment)) {
        printf("OpenGL error at %s, nr %d (0x%x): %s\n", $comment, $err, $err, $errorstr);
    } else {
        printf("OpenGL error nr %d (0x%x): %s\n", $err, $err, $errorstr);
    }
}

sub _vertex_shader_Gouraud {
    return <<'VERTEX';
#version 110

#define INTENSITY_CORRECTION 0.7

#define LIGHT_TOP_DIR        -0.6/1.31, 0.6/1.31, 1./1.31
#define LIGHT_TOP_DIFFUSE    (0.8 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SPECULAR   (0.5 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SHININESS  50.

#define LIGHT_FRONT_DIR      1./1.43, 0.2/1.43, 1./1.43
#define LIGHT_FRONT_DIFFUSE  (0.3 * INTENSITY_CORRECTION)
#define LIGHT_FRONT_SPECULAR (0.0 * INTENSITY_CORRECTION)
#define LIGHT_FRONT_SHININESS 50.

#define INTENSITY_AMBIENT    0.3

varying float intensity_specular;
varying float intensity_tainted;

void main()
{
    vec3 eye, normal, lightDir, viewVector, halfVector;
    float NdotL, NdotHV;

    eye = vec3(0., 0., 1.);

    // First transform the normal into eye space and normalize the result.
    normal = normalize(gl_NormalMatrix * gl_Normal);
    
    // Now normalize the light's direction. Note that according to the OpenGL specification, the light is stored in eye space. 
    // Also since we're talking about a directional light, the position field is actually direction.
    lightDir = vec3(LIGHT_TOP_DIR);
    halfVector = normalize(lightDir + eye);
    
    // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
    // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
    NdotL = max(dot(normal, lightDir), 0.0);

    intensity_tainted = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
    intensity_specular = 0.;

    if (NdotL > 0.0)
        intensity_specular = LIGHT_TOP_SPECULAR * pow(max(dot(normal, halfVector), 0.0), LIGHT_TOP_SHININESS);

    // Perform the same lighting calculation for the 2nd light source.
    lightDir = vec3(LIGHT_FRONT_DIR);
//    halfVector = normalize(lightDir + eye);
    NdotL = max(dot(normal, lightDir), 0.0);
    intensity_tainted += NdotL * LIGHT_FRONT_DIFFUSE;

    // compute the specular term if NdotL is larger than zero
//    if (NdotL > 0.0)
//        intensity_specular += LIGHT_FRONT_SPECULAR * pow(max(dot(normal, halfVector), 0.0), LIGHT_FRONT_SHININESS);

    gl_Position = ftransform();
} 

VERTEX
}

sub _fragment_shader_Gouraud {
    return <<'FRAGMENT';
#version 110

varying float intensity_specular;
varying float intensity_tainted;

uniform vec4 uniform_color;

void main()
{
    gl_FragColor = 
        vec4(intensity_specular, intensity_specular, intensity_specular, 0.) + uniform_color * intensity_tainted;
    gl_FragColor.a = uniform_color.a;
}

FRAGMENT
}

sub _vertex_shader_Phong {
    return <<'VERTEX';
#version 110

varying vec3 normal;
varying vec3 eye;
void main(void)  
{
   eye    = normalize(vec3(gl_ModelViewMatrix * gl_Vertex));
   normal = normalize(gl_NormalMatrix * gl_Normal);
   gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
}
VERTEX
}

sub _fragment_shader_Phong {
    return <<'FRAGMENT';
#version 110

#define INTENSITY_CORRECTION 0.7

#define LIGHT_TOP_DIR        -0.6/1.31, 0.6/1.31, 1./1.31
#define LIGHT_TOP_DIFFUSE    (0.8 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SPECULAR   (0.5 * INTENSITY_CORRECTION)
//#define LIGHT_TOP_SHININESS  50.
#define LIGHT_TOP_SHININESS  10.

#define LIGHT_FRONT_DIR      1./1.43, 0.2/1.43, 1./1.43
#define LIGHT_FRONT_DIFFUSE  (0.3 * INTENSITY_CORRECTION)
#define LIGHT_FRONT_SPECULAR (0.0 * INTENSITY_CORRECTION)
#define LIGHT_FRONT_SHININESS 50.

#define INTENSITY_AMBIENT    0.0

varying vec3 normal;
varying vec3 eye;
uniform vec4 uniform_color;
void main() {
 
    float intensity_specular = 0.;
    float intensity_tainted  = 0.;
    float intensity = max(dot(normal,vec3(LIGHT_TOP_DIR)), 0.0);
    // if the vertex is lit compute the specular color
    if (intensity > 0.0) {
        intensity_tainted = LIGHT_TOP_DIFFUSE * intensity;
        // compute the half vector
        vec3 h = normalize(vec3(LIGHT_TOP_DIR) + eye);  
        // compute the specular term into spec
        intensity_specular = LIGHT_TOP_SPECULAR * pow(max(dot(h, normal), 0.0), LIGHT_TOP_SHININESS);
    }
    intensity = max(dot(normal,vec3(LIGHT_FRONT_DIR)), 0.0);
    // if the vertex is lit compute the specular color
    if (intensity > 0.0) {
        intensity_tainted += LIGHT_FRONT_DIFFUSE * intensity;
        // compute the half vector
//        vec3 h = normalize(vec3(LIGHT_FRONT_DIR) + eye);
        // compute the specular term into spec
//        intensity_specular += LIGHT_FRONT_SPECULAR * pow(max(dot(h,normal), 0.0), LIGHT_FRONT_SHININESS);
    }
    gl_FragColor = max(
        vec4(intensity_specular, intensity_specular, intensity_specular, 0.) + uniform_color * intensity_tainted, 
        INTENSITY_AMBIENT * uniform_color);
    gl_FragColor.a = uniform_color.a;
}
FRAGMENT
}

sub _vertex_shader_variable_layer_height {
    return <<'VERTEX';
#version 110

#define LIGHT_TOP_DIR        0., 1., 0.
#define LIGHT_TOP_DIFFUSE    0.2
#define LIGHT_TOP_SPECULAR   0.3
#define LIGHT_TOP_SHININESS  50.

#define LIGHT_FRONT_DIR      0., 0., 1.
#define LIGHT_FRONT_DIFFUSE  0.5
#define LIGHT_FRONT_SPECULAR 0.3
#define LIGHT_FRONT_SHININESS 50.

#define INTENSITY_AMBIENT    0.1

uniform float z_to_texture_row;
varying float intensity_specular;
varying float intensity_tainted;
varying float object_z;

void main()
{
    vec3 eye, normal, lightDir, viewVector, halfVector;
    float NdotL, NdotHV;

//    eye = gl_ModelViewMatrixInverse[3].xyz;
    eye = vec3(0., 0., 1.);

    // First transform the normal into eye space and normalize the result.
    normal = normalize(gl_NormalMatrix * gl_Normal);
    
    // Now normalize the light's direction. Note that according to the OpenGL specification, the light is stored in eye space. 
    // Also since we're talking about a directional light, the position field is actually direction.
    lightDir = vec3(LIGHT_TOP_DIR);
    halfVector = normalize(lightDir + eye);
    
    // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
    // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
    NdotL = max(dot(normal, lightDir), 0.0);

    intensity_tainted = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
    intensity_specular = 0.;

//    if (NdotL > 0.0)
//        intensity_specular = LIGHT_TOP_SPECULAR * pow(max(dot(normal, halfVector), 0.0), LIGHT_TOP_SHININESS);

    // Perform the same lighting calculation for the 2nd light source.
    lightDir = vec3(LIGHT_FRONT_DIR);
    halfVector = normalize(lightDir + eye);
    NdotL = max(dot(normal, lightDir), 0.0);
    intensity_tainted += NdotL * LIGHT_FRONT_DIFFUSE;
    
    // compute the specular term if NdotL is larger than zero
    if (NdotL > 0.0)
        intensity_specular += LIGHT_FRONT_SPECULAR * pow(max(dot(normal, halfVector), 0.0), LIGHT_FRONT_SHININESS);

    // Scaled to widths of the Z texture.
    object_z = gl_Vertex.z / gl_Vertex.w;

    gl_Position = ftransform();
} 

VERTEX
}

sub _fragment_shader_variable_layer_height {
    return <<'FRAGMENT';
#version 110

#define M_PI 3.1415926535897932384626433832795

// 2D texture (1D texture split by the rows) of color along the object Z axis.
uniform sampler2D z_texture;
// Scaling from the Z texture rows coordinate to the normalized texture row coordinate.
uniform float z_to_texture_row;
uniform float z_texture_row_to_normalized;

varying float intensity_specular;
varying float intensity_tainted;
varying float object_z;
uniform float z_cursor;
uniform float z_cursor_band_width;

void main()
{
    float object_z_row = z_to_texture_row * object_z;
    // Index of the row in the texture.
    float z_texture_row = floor(object_z_row);
    // Normalized coordinate from 0. to 1.
    float z_texture_col = object_z_row - z_texture_row;
    float z_blend = 0.25 * cos(min(M_PI, abs(M_PI * (object_z - z_cursor) * 1.8 / z_cursor_band_width))) + 0.25;
    // Calculate level of detail from the object Z coordinate.
    // This makes the slowly sloping surfaces to be show with high detail (with stripes),
    // and the vertical surfaces to be shown with low detail (no stripes)
    float z_in_cells    = object_z_row * 190.;
    // Gradient of Z projected on the screen.
    float dx_vtc        = dFdx(z_in_cells);
    float dy_vtc        = dFdy(z_in_cells);
    float lod           = clamp(0.5 * log2(max(dx_vtc*dx_vtc, dy_vtc*dy_vtc)), 0., 1.);
    // Sample the Z texture. Texture coordinates are normalized to <0, 1>.
    vec4 color       =
        (1. - lod) * texture2D(z_texture, vec2(z_texture_col, z_texture_row_to_normalized * (z_texture_row + 0.5    )), -10000.) +
        lod        * texture2D(z_texture, vec2(z_texture_col, z_texture_row_to_normalized * (z_texture_row * 2. + 1.)),  10000.);
    // Mix the final color.
    gl_FragColor = 
        vec4(intensity_specular, intensity_specular, intensity_specular, 1.) + 
        (1. - z_blend) * intensity_tainted * color + 
        z_blend * vec4(1., 1., 0., 0.);
    // and reset the transparency.
    gl_FragColor.a = 1.;
}

FRAGMENT
}

# The 3D canvas to display objects and tool paths.
package Slic3r::GUI::3DScene;
use base qw(Slic3r::GUI::3DScene::Base);

use OpenGL qw(:glconstants :gluconstants :glufunctions);
use List::Util qw(first min max);
use Slic3r::Geometry qw(scale unscale epsilon);
use Slic3r::Print::State ':steps';

__PACKAGE__->mk_accessors(qw(
    color_by
    select_by
    drag_by
));

sub new {
    my $class = shift;
    
    my $self = $class->SUPER::new(@_);
    $self->color_by('volume');      # object | volume
    $self->select_by('object');     # object | volume | instance
    $self->drag_by('instance');     # object | instance
    
    return $self;
}

sub load_object {
    my ($self, $model, $print, $obj_idx, $instance_idxs) = @_;
    
    $self->SetCurrent($self->GetContext) if $self->UseVBOs;

    my $model_object;
    if ($model->isa('Slic3r::Model::Object')) {
        $model_object = $model;
        $model = $model_object->model;
        $obj_idx = 0;
    } else {
        $model_object = $model->get_object($obj_idx);
    }
    
    $instance_idxs ||= [0..$#{$model_object->instances}];
    my $volume_indices = $self->volumes->load_object(
        $model_object, $obj_idx, $instance_idxs, $self->color_by, $self->select_by, $self->drag_by,
        $self->UseVBOs);
    return @{$volume_indices};
}

# Create 3D thick extrusion lines for a skirt and brim.
# Adds a new Slic3r::GUI::3DScene::Volume to $self->volumes.
sub load_print_toolpaths {
    my ($self, $print, $colors) = @_;

    $self->SetCurrent($self->GetContext) if $self->UseVBOs;
    Slic3r::GUI::_3DScene::_load_print_toolpaths($print, $self->volumes, $colors, $self->UseVBOs)
        if ($print->step_done(STEP_SKIRT) && $print->step_done(STEP_BRIM));
}

# Create 3D thick extrusion lines for object forming extrusions.
# Adds a new Slic3r::GUI::3DScene::Volume to $self->volumes,
# one for perimeters, one for infill and one for supports.
sub load_print_object_toolpaths {
    my ($self, $object, $colors) = @_;

    $self->SetCurrent($self->GetContext) if $self->UseVBOs;
    Slic3r::GUI::_3DScene::_load_print_object_toolpaths($object, $self->volumes, $colors, $self->UseVBOs);
}

# Create 3D thick extrusion lines for wipe tower extrusions.
sub load_wipe_tower_toolpaths {
    my ($self, $print, $colors) = @_;

    $self->SetCurrent($self->GetContext) if $self->UseVBOs;
    Slic3r::GUI::_3DScene::_load_wipe_tower_toolpaths($print, $self->volumes, $colors, $self->UseVBOs)
        if ($print->step_done(STEP_WIPE_TOWER));
}

sub set_toolpaths_range {
    my ($self, $min_z, $max_z) = @_;
    $self->volumes->set_range($min_z, $max_z);
}

1;