123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126 |
- #
- # chitu_crypt.py
- # Customizations for Chitu boards
- #
- import pioutil
- if pioutil.is_pio_build():
- import struct,uuid,marlin
- board = marlin.env.BoardConfig()
- def calculate_crc(contents, seed):
- accumulating_xor_value = seed;
- for i in range(0, len(contents), 4):
- value = struct.unpack('<I', contents[ i : i + 4])[0]
- accumulating_xor_value = accumulating_xor_value ^ value
- return accumulating_xor_value
- def xor_block(r0, r1, block_number, block_size, file_key):
- # This is the loop counter
- loop_counter = 0x0
- # This is the key length
- key_length = 0x18
- # This is an initial seed
- xor_seed = 0x4BAD
- # This is the block counter
- block_number = xor_seed * block_number
- #load the xor key from the file
- r7 = file_key
- for loop_counter in range(0, block_size):
- # meant to make sure different bits of the key are used.
- xor_seed = int(loop_counter / key_length)
- # IP is a scratch register / R12
- ip = loop_counter - (key_length * xor_seed)
- # xor_seed = (loop_counter * loop_counter) + block_number
- xor_seed = (loop_counter * loop_counter) + block_number
- # shift the xor_seed left by the bits in IP.
- xor_seed = xor_seed >> ip
- # load a byte into IP
- ip = r0[loop_counter]
- # XOR the seed with r7
- xor_seed = xor_seed ^ r7
- # and then with IP
- xor_seed = xor_seed ^ ip
- #Now store the byte back
- r1[loop_counter] = xor_seed & 0xFF
- #increment the loop_counter
- loop_counter = loop_counter + 1
- def encrypt_file(input, output_file, file_length):
- input_file = bytearray(input.read())
- block_size = 0x800
- key_length = 0x18
- uid_value = uuid.uuid4()
- file_key = int(uid_value.hex[0:8], 16)
- xor_crc = 0xEF3D4323;
- # the input file is exepcted to be in chunks of 0x800
- # so round the size
- while len(input_file) % block_size != 0:
- input_file.extend(b'0x0')
- # write the file header
- output_file.write(struct.pack(">I", 0x443D2D3F))
- # encrypt the contents using a known file header key
- # write the file_key
- output_file.write(struct.pack("<I", file_key))
- #TODO - how to enforce that the firmware aligns to block boundaries?
- block_count = int(len(input_file) / block_size)
- print ("Block Count is ", block_count)
- for block_number in range(0, block_count):
- block_offset = (block_number * block_size)
- block_end = block_offset + block_size
- block_array = bytearray(input_file[block_offset: block_end])
- xor_block(block_array, block_array, block_number, block_size, file_key)
- for n in range (0, block_size):
- input_file[block_offset + n] = block_array[n]
- # update the expected CRC value.
- xor_crc = calculate_crc(block_array, xor_crc)
- # write CRC
- output_file.write(struct.pack("<I", xor_crc))
- # finally, append the encrypted results.
- output_file.write(input_file)
- return
- # Encrypt ${PROGNAME}.bin and save it as 'update.cbd'
- def encrypt(source, target, env):
- from pathlib import Path
- fwpath = Path(target[0].path)
- fwsize = fwpath.stat().st_size
- enname = board.get("build.crypt_chitu")
- enpath = Path(target[0].dir.path)
- fwfile = fwpath.open("rb")
- enfile = (enpath / enname).open("wb")
- print(f"Encrypting {fwpath} to {enname}")
- encrypt_file(fwfile, enfile, fwsize)
- fwfile.close()
- enfile.close()
- fwpath.unlink()
- marlin.relocate_firmware("0x08008800")
- marlin.add_post_action(encrypt);
|