123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148 |
- # Copyright (c) 2020 Ultimaker B.V.
- # Cura is released under the terms of the LGPLv3 or higher.
- import numpy
- #from pynest2d import Point, Box, Item, NfpConfig, nest
- from typing import List, TYPE_CHECKING, Optional, Tuple
- from UM.Application import Application
- from UM.Logger import Logger
- from UM.Math.Matrix import Matrix
- from UM.Math.Polygon import Polygon
- from UM.Math.Quaternion import Quaternion
- from UM.Math.Vector import Vector
- from UM.Operations.AddSceneNodeOperation import AddSceneNodeOperation
- from UM.Operations.GroupedOperation import GroupedOperation
- from UM.Operations.RotateOperation import RotateOperation
- from UM.Operations.TranslateOperation import TranslateOperation
- if TYPE_CHECKING:
- from UM.Scene.SceneNode import SceneNode
- from cura.BuildVolume import BuildVolume
- def findNodePlacement(nodes_to_arrange: List["SceneNode"], build_volume: "BuildVolume", fixed_nodes: Optional[List["SceneNode"]] = None, factor = 10000) -> Tuple[bool, List[Item]]:
- """
- Find placement for a set of scene nodes, but don't actually move them just yet.
- :param nodes_to_arrange: The list of nodes that need to be moved.
- :param build_volume: The build volume that we want to place the nodes in. It gets size & disallowed areas from this.
- :param fixed_nodes: List of nods that should not be moved, but should be used when deciding where the others nodes
- are placed.
- :param factor: The library that we use is int based. This factor defines how accurate we want it to be.
- :return: tuple (found_solution_for_all, node_items)
- WHERE
- found_solution_for_all: Whether the algorithm found a place on the buildplate for all the objects
- node_items: A list of the nodes return by libnest2d, which contain the new positions on the buildplate
- """
- spacing = int(1.5 * factor) # 1.5mm spacing.
- machine_width = build_volume.getWidth()
- machine_depth = build_volume.getDepth()
- build_plate_bounding_box = Box(machine_width * factor, machine_depth * factor)
- if fixed_nodes is None:
- fixed_nodes = []
- # Add all the items we want to arrange
- node_items = []
- for node in nodes_to_arrange:
- hull_polygon = node.callDecoration("getConvexHull")
- if not hull_polygon or hull_polygon.getPoints is None:
- Logger.log("w", "Object {} cannot be arranged because it has no convex hull.".format(node.getName()))
- continue
- converted_points = []
- for point in hull_polygon.getPoints():
- converted_points.append(Point(int(point[0] * factor), int(point[1] * factor)))
- item = Item(converted_points)
- node_items.append(item)
- # Use a tiny margin for the build_plate_polygon (the nesting doesn't like overlapping disallowed areas)
- half_machine_width = 0.5 * machine_width - 1
- half_machine_depth = 0.5 * machine_depth - 1
- build_plate_polygon = Polygon(numpy.array([
- [half_machine_width, -half_machine_depth],
- [-half_machine_width, -half_machine_depth],
- [-half_machine_width, half_machine_depth],
- [half_machine_width, half_machine_depth]
- ], numpy.float32))
- disallowed_areas = build_volume.getDisallowedAreas()
- num_disallowed_areas_added = 0
- for area in disallowed_areas:
- converted_points = []
- # Clip the disallowed areas so that they don't overlap the bounding box (The arranger chokes otherwise)
- clipped_area = area.intersectionConvexHulls(build_plate_polygon)
- if clipped_area.getPoints() is not None and len(clipped_area.getPoints()) > 2: # numpy array has to be explicitly checked against None
- for point in clipped_area.getPoints():
- converted_points.append(Point(int(point[0] * factor), int(point[1] * factor)))
- disallowed_area = Item(converted_points)
- disallowed_area.markAsDisallowedAreaInBin(0)
- node_items.append(disallowed_area)
- num_disallowed_areas_added += 1
- for node in fixed_nodes:
- converted_points = []
- hull_polygon = node.callDecoration("getConvexHull")
- if hull_polygon is not None and hull_polygon.getPoints() is not None and len(hull_polygon.getPoints()) > 2: # numpy array has to be explicitly checked against None
- for point in hull_polygon.getPoints():
- converted_points.append(Point(point[0] * factor, point[1] * factor))
- item = Item(converted_points)
- item.markAsFixedInBin(0)
- node_items.append(item)
- num_disallowed_areas_added += 1
- config = NfpConfig()
- config.accuracy = 1.0
- num_bins = nest(node_items, build_plate_bounding_box, spacing, config)
- # Strip the fixed items (previously placed) and the disallowed areas from the results again.
- node_items = list(filter(lambda item: not item.isFixed(), node_items))
- found_solution_for_all = num_bins == 1
- return found_solution_for_all, node_items
- def arrange(nodes_to_arrange: List["SceneNode"], build_volume: "BuildVolume", fixed_nodes: Optional[List["SceneNode"]] = None, factor = 10000, add_new_nodes_in_scene: bool = False) -> bool:
- """
- Find placement for a set of scene nodes, and move them by using a single grouped operation.
- :param nodes_to_arrange: The list of nodes that need to be moved.
- :param build_volume: The build volume that we want to place the nodes in. It gets size & disallowed areas from this.
- :param fixed_nodes: List of nods that should not be moved, but should be used when deciding where the others nodes
- are placed.
- :param factor: The library that we use is int based. This factor defines how accuracte we want it to be.
- :param add_new_nodes_in_scene: Whether to create new scene nodes before applying the transformations and rotations
- :return: found_solution_for_all: Whether the algorithm found a place on the buildplate for all the objects
- """
- scene_root = Application.getInstance().getController().getScene().getRoot()
- found_solution_for_all, node_items = findNodePlacement(nodes_to_arrange, build_volume, fixed_nodes, factor)
- not_fit_count = 0
- grouped_operation = GroupedOperation()
- for node, node_item in zip(nodes_to_arrange, node_items):
- if add_new_nodes_in_scene:
- grouped_operation.addOperation(AddSceneNodeOperation(node, scene_root))
- if node_item.binId() == 0:
- # We found a spot for it
- rotation_matrix = Matrix()
- rotation_matrix.setByRotationAxis(node_item.rotation(), Vector(0, -1, 0))
- grouped_operation.addOperation(RotateOperation(node, Quaternion.fromMatrix(rotation_matrix)))
- grouped_operation.addOperation(TranslateOperation(node, Vector(node_item.translation().x() / factor, 0,
- node_item.translation().y() / factor)))
- else:
- # We didn't find a spot
- grouped_operation.addOperation(
- TranslateOperation(node, Vector(200, node.getWorldPosition().y, -not_fit_count * 20), set_position = True))
- not_fit_count += 1
- grouped_operation.push()
- return found_solution_for_all
|