123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228 |
- # Copyright (c) 2020 Ultimaker B.V.
- # Cura is released under the terms of the LGPLv3 or higher.
- import numpy
- import math
- from PyQt5.QtGui import QImage, qRed, qGreen, qBlue, qAlpha
- from PyQt5.QtCore import Qt
- from UM.Mesh.MeshReader import MeshReader
- from UM.Mesh.MeshBuilder import MeshBuilder
- from UM.Math.Vector import Vector
- from UM.Job import Job
- from UM.Logger import Logger
- from .ImageReaderUI import ImageReaderUI
- from cura.Scene.CuraSceneNode import CuraSceneNode as SceneNode
- class ImageReader(MeshReader):
- def __init__(self) -> None:
- super().__init__()
- self._supported_extensions = [".jpg", ".jpeg", ".bmp", ".gif", ".png"]
- self._ui = ImageReaderUI(self)
- def preRead(self, file_name, *args, **kwargs):
- img = QImage(file_name)
- if img.isNull():
- Logger.log("e", "Image is corrupt.")
- return MeshReader.PreReadResult.failed
- width = img.width()
- depth = img.height()
- largest = max(width, depth)
- width = width / largest * self._ui.default_width
- depth = depth / largest * self._ui.default_depth
- self._ui.setWidthAndDepth(width, depth)
- self._ui.showConfigUI()
- self._ui.waitForUIToClose()
- if self._ui.getCancelled():
- return MeshReader.PreReadResult.cancelled
- return MeshReader.PreReadResult.accepted
- def _read(self, file_name):
- size = max(self._ui.getWidth(), self._ui.getDepth())
- return self._generateSceneNode(file_name, size, self._ui.peak_height, self._ui.base_height, self._ui.smoothing, 512, self._ui.lighter_is_higher, self._ui.use_transparency_model, self._ui.transmittance_1mm)
- def _generateSceneNode(self, file_name, xz_size, height_from_base, base_height, blur_iterations, max_size, lighter_is_higher, use_transparency_model, transmittance_1mm):
- scene_node = SceneNode()
- mesh = MeshBuilder()
- img = QImage(file_name)
- if img.isNull():
- Logger.log("e", "Image is corrupt.")
- return None
- width = max(img.width(), 2)
- height = max(img.height(), 2)
- aspect = height / width
- if img.width() < 2 or img.height() < 2:
- img = img.scaled(width, height, Qt.IgnoreAspectRatio)
- height_from_base = max(height_from_base, 0)
- base_height = max(base_height, 0)
- xz_size = max(xz_size, 1)
- scale_vector = Vector(xz_size, height_from_base, xz_size)
- if width > height:
- scale_vector = scale_vector.set(z=scale_vector.z * aspect)
- elif height > width:
- scale_vector = scale_vector.set(x=scale_vector.x / aspect)
- if width > max_size or height > max_size:
- scale_factor = max_size / width
- if height > width:
- scale_factor = max_size / height
- width = int(max(round(width * scale_factor), 2))
- height = int(max(round(height * scale_factor), 2))
- img = img.scaled(width, height, Qt.IgnoreAspectRatio)
- width_minus_one = width - 1
- height_minus_one = height - 1
- Job.yieldThread()
- texel_width = 1.0 / (width_minus_one) * scale_vector.x
- texel_height = 1.0 / (height_minus_one) * scale_vector.z
- height_data = numpy.zeros((height, width), dtype = numpy.float32)
- for x in range(0, width):
- for y in range(0, height):
- qrgb = img.pixel(x, y)
- if use_transparency_model:
- height_data[y, x] = (0.299 * math.pow(qRed(qrgb) / 255.0, 2.2) + 0.587 * math.pow(qGreen(qrgb) / 255.0, 2.2) + 0.114 * math.pow(qBlue(qrgb) / 255.0, 2.2))
- else:
- height_data[y, x] = (0.212655 * qRed(qrgb) + 0.715158 * qGreen(qrgb) + 0.072187 * qBlue(qrgb)) / 255 # fast computation ignoring gamma and degamma
- Job.yieldThread()
- if lighter_is_higher == use_transparency_model:
- height_data = 1 - height_data
- for _ in range(0, blur_iterations):
- copy = numpy.pad(height_data, ((1, 1), (1, 1)), mode = "edge")
- height_data += copy[1:-1, 2:]
- height_data += copy[1:-1, :-2]
- height_data += copy[2:, 1:-1]
- height_data += copy[:-2, 1:-1]
- height_data += copy[2:, 2:]
- height_data += copy[:-2, 2:]
- height_data += copy[2:, :-2]
- height_data += copy[:-2, :-2]
- height_data /= 9
- Job.yieldThread()
- if use_transparency_model:
- divisor = 1.0 / math.log(transmittance_1mm / 100.0) # log-base doesn't matter here. Precompute this value for faster computation of each pixel.
- min_luminance = (transmittance_1mm / 100.0) ** height_from_base
- for (y, x) in numpy.ndindex(height_data.shape):
- mapped_luminance = min_luminance + (1.0 - min_luminance) * height_data[y, x]
- height_data[y, x] = base_height + divisor * math.log(mapped_luminance) # use same base as a couple lines above this
- else:
- height_data *= scale_vector.y
- height_data += base_height
- if img.hasAlphaChannel():
- for x in range(0, width):
- for y in range(0, height):
- height_data[y, x] *= qAlpha(img.pixel(x, y)) / 255.0
- heightmap_face_count = 2 * height_minus_one * width_minus_one
- total_face_count = heightmap_face_count + (width_minus_one * 2) * (height_minus_one * 2) + 2
- mesh.reserveFaceCount(total_face_count)
- # initialize to texel space vertex offsets.
- # 6 is for 6 vertices for each texel quad.
- heightmap_vertices = numpy.zeros((width_minus_one * height_minus_one, 6, 3), dtype = numpy.float32)
- heightmap_vertices = heightmap_vertices + numpy.array([[
- [0, base_height, 0],
- [0, base_height, texel_height],
- [texel_width, base_height, texel_height],
- [texel_width, base_height, texel_height],
- [texel_width, base_height, 0],
- [0, base_height, 0]
- ]], dtype = numpy.float32)
- offsetsz, offsetsx = numpy.mgrid[0: height_minus_one, 0: width - 1]
- offsetsx = numpy.array(offsetsx, numpy.float32).reshape(-1, 1) * texel_width
- offsetsz = numpy.array(offsetsz, numpy.float32).reshape(-1, 1) * texel_height
- # offsets for each texel quad
- heightmap_vertex_offsets = numpy.concatenate([offsetsx, numpy.zeros((offsetsx.shape[0], offsetsx.shape[1]), dtype = numpy.float32), offsetsz], 1)
- heightmap_vertices += heightmap_vertex_offsets.repeat(6, 0).reshape(-1, 6, 3)
- # apply height data to y values
- heightmap_vertices[:, 0, 1] = heightmap_vertices[:, 5, 1] = height_data[:-1, :-1].reshape(-1)
- heightmap_vertices[:, 1, 1] = height_data[1:, :-1].reshape(-1)
- heightmap_vertices[:, 2, 1] = heightmap_vertices[:, 3, 1] = height_data[1:, 1:].reshape(-1)
- heightmap_vertices[:, 4, 1] = height_data[:-1, 1:].reshape(-1)
- heightmap_indices = numpy.array(numpy.mgrid[0:heightmap_face_count * 3], dtype = numpy.int32).reshape(-1, 3)
- mesh._vertices[0:(heightmap_vertices.size // 3), :] = heightmap_vertices.reshape(-1, 3)
- mesh._indices[0:(heightmap_indices.size // 3), :] = heightmap_indices
- mesh._vertex_count = heightmap_vertices.size // 3
- mesh._face_count = heightmap_indices.size // 3
- geo_width = width_minus_one * texel_width
- geo_height = height_minus_one * texel_height
- # bottom
- mesh.addFaceByPoints(0, 0, 0, 0, 0, geo_height, geo_width, 0, geo_height)
- mesh.addFaceByPoints(geo_width, 0, geo_height, geo_width, 0, 0, 0, 0, 0)
- # north and south walls
- for n in range(0, width_minus_one):
- x = n * texel_width
- nx = (n + 1) * texel_width
- hn0 = height_data[0, n]
- hn1 = height_data[0, n + 1]
- hs0 = height_data[height_minus_one, n]
- hs1 = height_data[height_minus_one, n + 1]
- mesh.addFaceByPoints(x, 0, 0, nx, 0, 0, nx, hn1, 0)
- mesh.addFaceByPoints(nx, hn1, 0, x, hn0, 0, x, 0, 0)
- mesh.addFaceByPoints(x, 0, geo_height, nx, 0, geo_height, nx, hs1, geo_height)
- mesh.addFaceByPoints(nx, hs1, geo_height, x, hs0, geo_height, x, 0, geo_height)
- # west and east walls
- for n in range(0, height_minus_one):
- y = n * texel_height
- ny = (n + 1) * texel_height
- hw0 = height_data[n, 0]
- hw1 = height_data[n + 1, 0]
- he0 = height_data[n, width_minus_one]
- he1 = height_data[n + 1, width_minus_one]
- mesh.addFaceByPoints(0, 0, y, 0, 0, ny, 0, hw1, ny)
- mesh.addFaceByPoints(0, hw1, ny, 0, hw0, y, 0, 0, y)
- mesh.addFaceByPoints(geo_width, 0, y, geo_width, 0, ny, geo_width, he1, ny)
- mesh.addFaceByPoints(geo_width, he1, ny, geo_width, he0, y, geo_width, 0, y)
- mesh.calculateNormals(fast = True)
- scene_node.setMeshData(mesh.build())
- return scene_node
|