123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162 |
- # Copyright (c) 2019 Ultimaker B.V.
- # Cura is released under the terms of the LGPLv3 or higher.
- import numpy
- import copy
- from typing import Optional, Tuple, TYPE_CHECKING, Union
- from UM.Math.Polygon import Polygon
- if TYPE_CHECKING:
- from UM.Scene.SceneNode import SceneNode
- class ShapeArray:
- """Polygon representation as an array for use with :py:class:`cura.Arranging.Arrange.Arrange`"""
- def __init__(self, arr: numpy.ndarray, offset_x: float, offset_y: float, scale: float = 1) -> None:
- self.arr = arr
- self.offset_x = offset_x
- self.offset_y = offset_y
- self.scale = scale
- @classmethod
- def fromPolygon(cls, vertices: numpy.ndarray, scale: float = 1) -> "ShapeArray":
- """Instantiate from a bunch of vertices
- :param vertices:
- :param scale: scale the coordinates
- :return: a shape array instantiated from a bunch of vertices
- """
- # scale
- vertices = vertices * scale
- # flip y, x -> x, y
- flip_vertices = numpy.zeros((vertices.shape))
- flip_vertices[:, 0] = vertices[:, 1]
- flip_vertices[:, 1] = vertices[:, 0]
- flip_vertices = flip_vertices[::-1]
- # offset, we want that all coordinates have positive values
- offset_y = int(numpy.amin(flip_vertices[:, 0]))
- offset_x = int(numpy.amin(flip_vertices[:, 1]))
- flip_vertices[:, 0] = numpy.add(flip_vertices[:, 0], -offset_y)
- flip_vertices[:, 1] = numpy.add(flip_vertices[:, 1], -offset_x)
- shape = numpy.array([int(numpy.amax(flip_vertices[:, 0])), int(numpy.amax(flip_vertices[:, 1]))])
- shape[numpy.where(shape == 0)] = 1
- arr = cls.arrayFromPolygon(shape, flip_vertices)
- if not numpy.ndarray.any(arr):
- # set at least 1 pixel
- arr[0][0] = 1
- return cls(arr, offset_x, offset_y)
- @classmethod
- def fromNode(cls, node: "SceneNode", min_offset: float, scale: float = 0.5, include_children: bool = False) -> Tuple[Optional["ShapeArray"], Optional["ShapeArray"]]:
- """Instantiate an offset and hull ShapeArray from a scene node.
- :param node: source node where the convex hull must be present
- :param min_offset: offset for the offset ShapeArray
- :param scale: scale the coordinates
- :return: A tuple containing an offset and hull shape array
- """
- transform = node._transformation
- transform_x = transform._data[0][3]
- transform_y = transform._data[2][3]
- hull_verts = node.callDecoration("getConvexHull")
- # If a model is too small then it will not contain any points
- if hull_verts is None or not hull_verts.getPoints().any():
- return None, None
- # For one_at_a_time printing you need the convex hull head.
- hull_head_verts = node.callDecoration("getConvexHullHead") or hull_verts
- if hull_head_verts is None:
- hull_head_verts = Polygon()
- # If the child-nodes are included, adjust convex hulls as well:
- if include_children:
- children = node.getAllChildren()
- if children is not None:
- for child in children:
- # 'Inefficient' combination of convex hulls through known code rather than mess it up:
- child_hull = child.callDecoration("getConvexHull")
- if child_hull is not None:
- hull_verts = hull_verts.unionConvexHulls(child_hull)
- child_hull_head = child.callDecoration("getConvexHullHead") or child_hull
- if child_hull_head is not None:
- hull_head_verts = hull_head_verts.unionConvexHulls(child_hull_head)
- offset_verts = hull_head_verts.getMinkowskiHull(Polygon.approximatedCircle(min_offset))
- offset_points = copy.deepcopy(offset_verts._points) # x, y
- offset_points[:, 0] = numpy.add(offset_points[:, 0], -transform_x)
- offset_points[:, 1] = numpy.add(offset_points[:, 1], -transform_y)
- offset_shape_arr = ShapeArray.fromPolygon(offset_points, scale = scale)
- hull_points = copy.deepcopy(hull_verts._points)
- hull_points[:, 0] = numpy.add(hull_points[:, 0], -transform_x)
- hull_points[:, 1] = numpy.add(hull_points[:, 1], -transform_y)
- hull_shape_arr = ShapeArray.fromPolygon(hull_points, scale = scale) # x, y
- return offset_shape_arr, hull_shape_arr
- @classmethod
- def arrayFromPolygon(cls, shape: Union[Tuple[int, int], numpy.ndarray], vertices: numpy.ndarray) -> numpy.ndarray:
- """Create :py:class:`numpy.ndarray` with dimensions defined by shape
- Fills polygon defined by vertices with ones, all other values zero
- Only works correctly for convex hull vertices
- Originally from: `Stackoverflow - generating a filled polygon inside a numpy array <https://stackoverflow.com/questions/37117878/generating-a-filled-polygon-inside-a-numpy-array>`_
- :param shape: numpy format shape, [x-size, y-size]
- :param vertices:
- :return: numpy array with dimensions defined by shape
- """
- base_array = numpy.zeros(shape, dtype = numpy.int32) # type: ignore # Initialize your array of zeros
- fill = numpy.ones(base_array.shape) * True # Initialize boolean array defining shape fill
- # Create check array for each edge segment, combine into fill array
- for k in range(vertices.shape[0]):
- check_array = cls._check(vertices[k - 1], vertices[k], base_array)
- if check_array is not None:
- fill = numpy.all([fill, check_array], axis=0)
- # Set all values inside polygon to one
- base_array[fill] = 1
- return base_array
- @classmethod
- def _check(cls, p1: numpy.ndarray, p2: numpy.ndarray, base_array: numpy.ndarray) -> Optional[numpy.ndarray]:
- """Return indices that mark one side of the line, used by arrayFromPolygon
- Uses the line defined by p1 and p2 to check array of
- input indices against interpolated value
- Returns boolean array, with True inside and False outside of shape
- Originally from: `Stackoverflow - generating a filled polygon inside a numpy array <https://stackoverflow.com/questions/37117878/generating-a-filled-polygon-inside-a-numpy-array>`_
- :param p1: 2-tuple with x, y for point 1
- :param p2: 2-tuple with x, y for point 2
- :param base_array: boolean array to project the line on
- :return: A numpy array with indices that mark one side of the line
- """
- if p1[0] == p2[0] and p1[1] == p2[1]:
- return None
- idxs = numpy.indices(base_array.shape) # Create 3D array of indices
- p1 = p1.astype(float)
- p2 = p2.astype(float)
- if p2[0] == p1[0]:
- sign = numpy.sign(p2[1] - p1[1])
- return idxs[1] * sign
- if p2[1] == p1[1]:
- sign = numpy.sign(p2[0] - p1[0])
- return idxs[1] * sign
- # Calculate max column idx for each row idx based on interpolated line between two points
- max_col_idx = (idxs[0] - p1[0]) / (p2[0] - p1[0]) * (p2[1] - p1[1]) + p1[1]
- sign = numpy.sign(p2[0] - p1[0])
- return idxs[1] * sign <= max_col_idx * sign
|