123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473 |
- # Copyright (c) 2018 Ultimaker B.V.
- # Cura is released under the terms of the LGPLv3 or higher.
- from UM.Backend import Backend
- from UM.Job import Job
- from UM.Logger import Logger
- from UM.Math.Vector import Vector
- from UM.Message import Message
- from cura.Scene.CuraSceneNode import CuraSceneNode
- from UM.i18n import i18nCatalog
- catalog = i18nCatalog("cura")
- from cura.CuraApplication import CuraApplication
- from cura.LayerDataBuilder import LayerDataBuilder
- from cura.LayerDataDecorator import LayerDataDecorator
- from cura.LayerPolygon import LayerPolygon
- from cura.Scene.GCodeListDecorator import GCodeListDecorator
- from cura.Settings.ExtruderManager import ExtruderManager
- import numpy
- import math
- import re
- from typing import Dict, List, NamedTuple, Optional, Union
- PositionOptional = NamedTuple("Position", [("x", Optional[float]), ("y", Optional[float]), ("z", Optional[float]), ("f", Optional[float]), ("e", Optional[float])])
- Position = NamedTuple("Position", [("x", float), ("y", float), ("z", float), ("f", float), ("e", List[float])])
- ## This parser is intended to interpret the common firmware codes among all the
- # different flavors
- class FlavorParser:
- def __init__(self) -> None:
- CuraApplication.getInstance().hideMessageSignal.connect(self._onHideMessage)
- self._cancelled = False
- self._message = None
- self._layer_number = 0
- self._extruder_number = 0
- self._clearValues()
- self._scene_node = None
- # X, Y, Z position, F feedrate and E extruder values are stored
- self._position = Position
- self._is_layers_in_file = False # Does the Gcode have the layers comment?
- self._extruder_offsets = {} # type: Dict[int, List[float]] # Offsets for multi extruders. key is index, value is [x-offset, y-offset]
- self._current_layer_thickness = 0.2 # default
- self._filament_diameter = 2.85 # default
- CuraApplication.getInstance().getPreferences().addPreference("gcodereader/show_caution", True)
- def _clearValues(self) -> None:
- self._extruder_number = 0
- self._extrusion_length_offset = [0] # type: List[float]
- self._layer_type = LayerPolygon.Inset0Type
- self._layer_number = 0
- self._previous_z = 0 # type: float
- self._layer_data_builder = LayerDataBuilder()
- self._is_absolute_positioning = True # It can be absolute (G90) or relative (G91)
- self._is_absolute_extrusion = True # It can become absolute (M82, default) or relative (M83)
- @staticmethod
- def _getValue(line: str, code: str) -> Optional[Union[str, int, float]]:
- n = line.find(code)
- if n < 0:
- return None
- n += len(code)
- pattern = re.compile("[;\s]")
- match = pattern.search(line, n)
- m = match.start() if match is not None else -1
- try:
- if m < 0:
- return line[n:]
- return line[n:m]
- except:
- return None
- def _getInt(self, line: str, code: str) -> Optional[int]:
- value = self._getValue(line, code)
- try:
- return int(value) # type: ignore
- except:
- return None
- def _getFloat(self, line: str, code: str) -> Optional[float]:
- value = self._getValue(line, code)
- try:
- return float(value) # type: ignore
- except:
- return None
- def _onHideMessage(self, message: str) -> None:
- if message == self._message:
- self._cancelled = True
- def _createPolygon(self, layer_thickness: float, path: List[List[Union[float, int]]], extruder_offsets: List[float]) -> bool:
- countvalid = 0
- for point in path:
- if point[5] > 0:
- countvalid += 1
- if countvalid >= 2:
- # we know what to do now, no need to count further
- continue
- if countvalid < 2:
- return False
- try:
- self._layer_data_builder.addLayer(self._layer_number)
- self._layer_data_builder.setLayerHeight(self._layer_number, path[0][2])
- self._layer_data_builder.setLayerThickness(self._layer_number, layer_thickness)
- this_layer = self._layer_data_builder.getLayer(self._layer_number)
- except ValueError:
- return False
- count = len(path)
- line_types = numpy.empty((count - 1, 1), numpy.int32)
- line_widths = numpy.empty((count - 1, 1), numpy.float32)
- line_thicknesses = numpy.empty((count - 1, 1), numpy.float32)
- line_feedrates = numpy.empty((count - 1, 1), numpy.float32)
- line_widths[:, 0] = 0.35 # Just a guess
- line_thicknesses[:, 0] = layer_thickness
- points = numpy.empty((count, 3), numpy.float32)
- extrusion_values = numpy.empty((count, 1), numpy.float32)
- i = 0
- for point in path:
- points[i, :] = [point[0] + extruder_offsets[0], point[2], -point[1] - extruder_offsets[1]]
- extrusion_values[i] = point[4]
- if i > 0:
- line_feedrates[i - 1] = point[3]
- line_types[i - 1] = point[5]
- if point[5] in [LayerPolygon.MoveCombingType, LayerPolygon.MoveRetractionType]:
- line_widths[i - 1] = 0.1
- line_thicknesses[i - 1] = 0.0 # Travels are set as zero thickness lines
- else:
- line_widths[i - 1] = self._calculateLineWidth(points[i], points[i-1], extrusion_values[i], extrusion_values[i-1], layer_thickness)
- i += 1
- this_poly = LayerPolygon(self._extruder_number, line_types, points, line_widths, line_thicknesses, line_feedrates)
- this_poly.buildCache()
- this_layer.polygons.append(this_poly)
- return True
- def _createEmptyLayer(self, layer_number: int) -> None:
- self._layer_data_builder.addLayer(layer_number)
- self._layer_data_builder.setLayerHeight(layer_number, 0)
- self._layer_data_builder.setLayerThickness(layer_number, 0)
- def _calculateLineWidth(self, current_point: Position, previous_point: Position, current_extrusion: float, previous_extrusion: float, layer_thickness: float) -> float:
- # Area of the filament
- Af = (self._filament_diameter / 2) ** 2 * numpy.pi
- # Length of the extruded filament
- de = current_extrusion - previous_extrusion
- # Volumne of the extruded filament
- dVe = de * Af
- # Length of the printed line
- dX = numpy.sqrt((current_point[0] - previous_point[0])**2 + (current_point[2] - previous_point[2])**2)
- # When the extruder recovers from a retraction, we get zero distance
- if dX == 0:
- return 0.1
- # Area of the printed line. This area is a rectangle
- Ae = dVe / dX
- # This area is a rectangle with area equal to layer_thickness * layer_width
- line_width = Ae / layer_thickness
- # A threshold is set to avoid weird paths in the GCode
- if line_width > 1.2:
- return 0.35
- return line_width
- def _gCode0(self, position: Position, params: PositionOptional, path: List[List[Union[float, int]]]) -> Position:
- x, y, z, f, e = position
- if self._is_absolute_positioning:
- x = params.x if params.x is not None else x
- y = params.y if params.y is not None else y
- z = params.z if params.z is not None else z
- else:
- x += params.x if params.x is not None else 0
- y += params.y if params.y is not None else 0
- z += params.z if params.z is not None else 0
- f = params.f if params.f is not None else f
- if params.e is not None:
- new_extrusion_value = params.e if self._is_absolute_extrusion else e[self._extruder_number] + params.e
- if new_extrusion_value > e[self._extruder_number]:
- path.append([x, y, z, f, new_extrusion_value + self._extrusion_length_offset[self._extruder_number], self._layer_type]) # extrusion
- else:
- path.append([x, y, z, f, new_extrusion_value + self._extrusion_length_offset[self._extruder_number], LayerPolygon.MoveRetractionType]) # retraction
- e[self._extruder_number] = new_extrusion_value
- # Only when extruding we can determine the latest known "layer height" which is the difference in height between extrusions
- # Also, 1.5 is a heuristic for any priming or whatsoever, we skip those.
- if z > self._previous_z and (z - self._previous_z < 1.5):
- self._current_layer_thickness = z - self._previous_z # allow a tiny overlap
- self._previous_z = z
- else:
- path.append([x, y, z, f, e[self._extruder_number] + self._extrusion_length_offset[self._extruder_number], LayerPolygon.MoveCombingType])
- return self._position(x, y, z, f, e)
- # G0 and G1 should be handled exactly the same.
- _gCode1 = _gCode0
- ## Home the head.
- def _gCode28(self, position: Position, params: PositionOptional, path: List[List[Union[float, int]]]) -> Position:
- return self._position(
- params.x if params.x is not None else position.x,
- params.y if params.y is not None else position.y,
- params.z if params.z is not None else position.z,
- position.f,
- position.e)
- ## Set the absolute positioning
- def _gCode90(self, position: Position, params: PositionOptional, path: List[List[Union[float, int]]]) -> Position:
- self._is_absolute_positioning = True
- self._is_absolute_extrusion = True
- return position
- ## Set the relative positioning
- def _gCode91(self, position: Position, params: PositionOptional, path: List[List[Union[float, int]]]) -> Position:
- self._is_absolute_positioning = False
- self._is_absolute_extrusion = False
- return position
- ## Reset the current position to the values specified.
- # For example: G92 X10 will set the X to 10 without any physical motion.
- def _gCode92(self, position: Position, params: PositionOptional, path: List[List[Union[float, int]]]) -> Position:
- if params.e is not None:
- # Sometimes a G92 E0 is introduced in the middle of the GCode so we need to keep those offsets for calculate the line_width
- self._extrusion_length_offset[self._extruder_number] += position.e[self._extruder_number] - params.e
- position.e[self._extruder_number] = params.e
- return self._position(
- params.x if params.x is not None else position.x,
- params.y if params.y is not None else position.y,
- params.z if params.z is not None else position.z,
- params.f if params.f is not None else position.f,
- position.e)
- def processGCode(self, G: int, line: str, position: Position, path: List[List[Union[float, int]]]) -> Position:
- func = getattr(self, "_gCode%s" % G, None)
- line = line.split(";", 1)[0] # Remove comments (if any)
- if func is not None:
- s = line.upper().split(" ")
- x, y, z, f, e = None, None, None, None, None
- for item in s[1:]:
- if len(item) <= 1:
- continue
- if item.startswith(";"):
- continue
- if item[0] == "X":
- x = float(item[1:])
- if item[0] == "Y":
- y = float(item[1:])
- if item[0] == "Z":
- z = float(item[1:])
- if item[0] == "F":
- f = float(item[1:]) / 60
- if item[0] == "E":
- e = float(item[1:])
- params = PositionOptional(x, y, z, f, e)
- return func(position, params, path)
- return position
- def processTCode(self, T: int, line: str, position: Position, path: List[List[Union[float, int]]]) -> Position:
- self._extruder_number = T
- if self._extruder_number + 1 > len(position.e):
- self._extrusion_length_offset.extend([0] * (self._extruder_number - len(position.e) + 1))
- position.e.extend([0] * (self._extruder_number - len(position.e) + 1))
- return position
- def processMCode(self, M: int, line: str, position: Position, path: List[List[Union[float, int]]]) -> Position:
- pass
- _type_keyword = ";TYPE:"
- _layer_keyword = ";LAYER:"
- ## For showing correct x, y offsets for each extruder
- def _extruderOffsets(self) -> Dict[int, List[float]]:
- result = {}
- for extruder in ExtruderManager.getInstance().getActiveExtruderStacks():
- result[int(extruder.getMetaData().get("position", "0"))] = [
- extruder.getProperty("machine_nozzle_offset_x", "value"),
- extruder.getProperty("machine_nozzle_offset_y", "value")]
- return result
- def processGCodeStream(self, stream: str) -> Optional[CuraSceneNode]:
- Logger.log("d", "Preparing to load GCode")
- self._cancelled = False
- # We obtain the filament diameter from the selected extruder to calculate line widths
- global_stack = CuraApplication.getInstance().getGlobalContainerStack()
-
- if not global_stack:
- return None
- self._filament_diameter = global_stack.extruders[str(self._extruder_number)].getProperty("material_diameter", "value")
- scene_node = CuraSceneNode()
- gcode_list = []
- self._is_layers_in_file = False
- self._extruder_offsets = self._extruderOffsets() # dict with index the extruder number. can be empty
- ##############################################################################################
- ## This part is where the action starts
- ##############################################################################################
- file_lines = 0
- current_line = 0
- for line in stream.split("\n"):
- file_lines += 1
- gcode_list.append(line + "\n")
- if not self._is_layers_in_file and line[:len(self._layer_keyword)] == self._layer_keyword:
- self._is_layers_in_file = True
- file_step = max(math.floor(file_lines / 100), 1)
- self._clearValues()
- self._message = Message(catalog.i18nc("@info:status", "Parsing G-code"),
- lifetime=0,
- title = catalog.i18nc("@info:title", "G-code Details"))
- assert(self._message is not None) # use for typing purposes
- self._message.setProgress(0)
- self._message.show()
- Logger.log("d", "Parsing Gcode...")
- current_position = Position(0, 0, 0, 0, [0])
- current_path = [] #type: List[List[float]]
- min_layer_number = 0
- negative_layers = 0
- previous_layer = 0
- for line in stream.split("\n"):
- if self._cancelled:
- Logger.log("d", "Parsing Gcode file cancelled")
- return None
- current_line += 1
- if current_line % file_step == 0:
- self._message.setProgress(math.floor(current_line / file_lines * 100))
- Job.yieldThread()
- if len(line) == 0:
- continue
- if line.find(self._type_keyword) == 0:
- type = line[len(self._type_keyword):].strip()
- if type == "WALL-INNER":
- self._layer_type = LayerPolygon.InsetXType
- elif type == "WALL-OUTER":
- self._layer_type = LayerPolygon.Inset0Type
- elif type == "SKIN":
- self._layer_type = LayerPolygon.SkinType
- elif type == "SKIRT":
- self._layer_type = LayerPolygon.SkirtType
- elif type == "SUPPORT":
- self._layer_type = LayerPolygon.SupportType
- elif type == "FILL":
- self._layer_type = LayerPolygon.InfillType
- else:
- Logger.log("w", "Encountered a unknown type (%s) while parsing g-code.", type)
- # When the layer change is reached, the polygon is computed so we have just one layer per extruder
- if self._is_layers_in_file and line[:len(self._layer_keyword)] == self._layer_keyword:
- try:
- layer_number = int(line[len(self._layer_keyword):])
- self._createPolygon(self._current_layer_thickness, current_path, self._extruder_offsets.get(self._extruder_number, [0, 0]))
- current_path.clear()
- # Start the new layer at the end position of the last layer
- current_path.append([current_position.x, current_position.y, current_position.z, current_position.f, current_position.e[self._extruder_number], LayerPolygon.MoveCombingType])
- # When using a raft, the raft layers are stored as layers < 0, it mimics the same behavior
- # as in ProcessSlicedLayersJob
- if layer_number < min_layer_number:
- min_layer_number = layer_number
- if layer_number < 0:
- layer_number += abs(min_layer_number)
- negative_layers += 1
- else:
- layer_number += negative_layers
- # In case there is a gap in the layer count, empty layers are created
- for empty_layer in range(previous_layer + 1, layer_number):
- self._createEmptyLayer(empty_layer)
- self._layer_number = layer_number
- previous_layer = layer_number
- except:
- pass
- # This line is a comment. Ignore it (except for the layer_keyword)
- if line.startswith(";"):
- continue
- G = self._getInt(line, "G")
- if G is not None:
- # When find a movement, the new posistion is calculated and added to the current_path, but
- # don't need to create a polygon until the end of the layer
- current_position = self.processGCode(G, line, current_position, current_path)
- continue
- # When changing the extruder, the polygon with the stored paths is computed
- if line.startswith("T"):
- T = self._getInt(line, "T")
- if T is not None:
- self._createPolygon(self._current_layer_thickness, current_path, self._extruder_offsets.get(self._extruder_number, [0, 0]))
- current_path.clear()
- # When changing tool, store the end point of the previous path, then process the code and finally
- # add another point with the new position of the head.
- current_path.append([current_position.x, current_position.y, current_position.z, current_position.f, current_position.e[self._extruder_number], LayerPolygon.MoveCombingType])
- current_position = self.processTCode(T, line, current_position, current_path)
- current_path.append([current_position.x, current_position.y, current_position.z, current_position.f, current_position.e[self._extruder_number], LayerPolygon.MoveCombingType])
- if line.startswith("M"):
- M = self._getInt(line, "M")
- self.processMCode(M, line, current_position, current_path)
- # "Flush" leftovers. Last layer paths are still stored
- if len(current_path) > 1:
- if self._createPolygon(self._current_layer_thickness, current_path, self._extruder_offsets.get(self._extruder_number, [0, 0])):
- self._layer_number += 1
- current_path.clear()
- material_color_map = numpy.zeros((8, 4), dtype = numpy.float32)
- material_color_map[0, :] = [0.0, 0.7, 0.9, 1.0]
- material_color_map[1, :] = [0.7, 0.9, 0.0, 1.0]
- material_color_map[2, :] = [0.9, 0.0, 0.7, 1.0]
- material_color_map[3, :] = [0.7, 0.0, 0.0, 1.0]
- material_color_map[4, :] = [0.0, 0.7, 0.0, 1.0]
- material_color_map[5, :] = [0.0, 0.0, 0.7, 1.0]
- material_color_map[6, :] = [0.3, 0.3, 0.3, 1.0]
- material_color_map[7, :] = [0.7, 0.7, 0.7, 1.0]
- layer_mesh = self._layer_data_builder.build(material_color_map)
- decorator = LayerDataDecorator()
- decorator.setLayerData(layer_mesh)
- scene_node.addDecorator(decorator)
- gcode_list_decorator = GCodeListDecorator()
- gcode_list_decorator.setGCodeList(gcode_list)
- scene_node.addDecorator(gcode_list_decorator)
- # gcode_dict stores gcode_lists for a number of build plates.
- active_build_plate_id = CuraApplication.getInstance().getMultiBuildPlateModel().activeBuildPlate
- gcode_dict = {active_build_plate_id: gcode_list}
- CuraApplication.getInstance().getController().getScene().gcode_dict = gcode_dict #type: ignore #Because gcode_dict is generated dynamically.
- Logger.log("d", "Finished parsing Gcode")
- self._message.hide()
- if self._layer_number == 0:
- Logger.log("w", "File doesn't contain any valid layers")
- settings = CuraApplication.getInstance().getGlobalContainerStack()
- if not settings.getProperty("machine_center_is_zero", "value"):
- machine_width = settings.getProperty("machine_width", "value")
- machine_depth = settings.getProperty("machine_depth", "value")
- scene_node.setPosition(Vector(-machine_width / 2, 0, machine_depth / 2))
- Logger.log("d", "GCode loading finished")
- if CuraApplication.getInstance().getPreferences().getValue("gcodereader/show_caution"):
- caution_message = Message(catalog.i18nc(
- "@info:generic",
- "Make sure the g-code is suitable for your printer and printer configuration before sending the file to it. The g-code representation may not be accurate."),
- lifetime=0,
- title = catalog.i18nc("@info:title", "G-code Details"))
- caution_message.show()
- # The "save/print" button's state is bound to the backend state.
- backend = CuraApplication.getInstance().getBackend()
- backend.backendStateChange.emit(Backend.BackendState.Disabled)
- return scene_node
|