123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899 |
- from UM.Math.Color import Color
- import numpy
- class LayerPolygon:
- NoneType = 0
- Inset0Type = 1
- InsetXType = 2
- SkinType = 3
- SupportType = 4
- SkirtType = 5
- InfillType = 6
- SupportInfillType = 7
- MoveCombingType = 8
- MoveRetractionType = 9
- def __init__(self, mesh, polygon_type, data, line_width):
- self._mesh = mesh
- self._type = polygon_type
- self._data = data
- self._line_width = line_width / 1000
- self._begin = 0
- self._end = 0
- self._color = self.__color_map[polygon_type]
- def build(self, offset, vertices, colors, indices):
- self._begin = offset
- self._end = self._begin + len(self._data) - 1
- vertices[self._begin:self._end + 1, :] = self._data[:, :]
- colors[self._begin:self._end + 1, :] = numpy.array([self._color.r * 0.5, self._color.g * 0.5, self._color.b * 0.5, self._color.a], numpy.float32)
- for i in range(self._begin, self._end):
- indices[i, 0] = i
- indices[i, 1] = i + 1
- indices[self._end, 0] = self._end
- indices[self._end, 1] = self._begin
- def getColor(self):
- return self._color
- def vertexCount(self):
- return len(self._data)
- @property
- def type(self):
- return self._type
- @property
- def data(self):
- return self._data
- @property
- def elementCount(self):
- return ((self._end - self._begin) + 1) * 2 # The range of vertices multiplied by 2 since each vertex is used twice
- @property
- def lineWidth(self):
- return self._line_width
- # Calculate normals for the entire polygon using numpy.
- def getNormals(self):
- normals = numpy.copy(self._data)
- normals[:, 1] = 0.0 # We are only interested in 2D normals
- # Calculate the edges between points.
- # The call to numpy.roll shifts the entire array by one so that
- # we end up subtracting each next point from the current, wrapping
- # around. This gives us the edges from the next point to the current
- # point.
- normals[:] = normals[:] - numpy.roll(normals, -1, axis = 0)
- # Calculate the length of each edge using standard Pythagoras
- lengths = numpy.sqrt(normals[:, 0] ** 2 + normals[:, 2] ** 2)
- # The normal of a 2D vector is equal to its x and y coordinates swapped
- # and then x inverted. This code does that.
- normals[:, [0, 2]] = normals[:, [2, 0]]
- normals[:, 0] *= -1
- # Normalize the normals.
- normals[:, 0] /= lengths
- normals[:, 2] /= lengths
- return normals
- __color_map = {
- NoneType: Color(1.0, 1.0, 1.0, 1.0),
- Inset0Type: Color(1.0, 0.0, 0.0, 1.0),
- InsetXType: Color(0.0, 1.0, 0.0, 1.0),
- SkinType: Color(1.0, 1.0, 0.0, 1.0),
- SupportType: Color(0.0, 1.0, 1.0, 1.0),
- SkirtType: Color(0.0, 1.0, 1.0, 1.0),
- InfillType: Color(1.0, 0.74, 0.0, 1.0),
- SupportInfillType: Color(0.0, 1.0, 1.0, 1.0),
- MoveCombingType: Color(0.0, 0.0, 1.0, 1.0),
- MoveRetractionType: Color(0.5, 0.5, 1.0, 1.0),
- }
|