50_inst_per_sec.py 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584
  1. # Copyright (c) 2018 Ultimaker B.V.
  2. # Cura is released under the terms of the LGPLv3 or higher.
  3. import copy
  4. import math
  5. import os
  6. import sys
  7. import random
  8. from typing import Dict, List, Optional, Tuple
  9. # ====================================
  10. # Constants and Default Values
  11. # ====================================
  12. DEFAULT_BUFFER_FILLING_RATE_IN_C_PER_MS = 50.0 / 1000.0 # The buffer filling rate in #commands/ms
  13. DEFAULT_BUFFER_SIZE = 15 # The buffer size in #commands
  14. MINIMUM_PLANNER_SPEED = 0.05
  15. #Setting values for Ultimaker S5.
  16. MACHINE_MAX_FEEDRATE_X = 300
  17. MACHINE_MAX_FEEDRATE_Y = 300
  18. MACHINE_MAX_FEEDRATE_Z = 40
  19. MACHINE_MAX_FEEDRATE_E = 45
  20. MACHINE_MAX_ACCELERATION_X = 9000
  21. MACHINE_MAX_ACCELERATION_Y = 9000
  22. MACHINE_MAX_ACCELERATION_Z = 100
  23. MACHINE_MAX_ACCELERATION_E = 10000
  24. MACHINE_MAX_JERK_XY = 20
  25. MACHINE_MAX_JERK_Z = 0.4
  26. MACHINE_MAX_JERK_E = 5
  27. MACHINE_MINIMUM_FEEDRATE = 0
  28. MACHINE_ACCELERATION = 3000
  29. ## Gets the code and number from the given g-code line.
  30. def get_code_and_num(gcode_line: str) -> Tuple[str, str]:
  31. gcode_line = gcode_line.strip()
  32. cmd_code = gcode_line[0].upper()
  33. cmd_num = str(gcode_line[1:])
  34. return cmd_code, cmd_num
  35. ## Fetches arguments such as X1 Y2 Z3 from the given part list and returns a
  36. # dict.
  37. def get_value_dict(parts: List[str]) -> Dict[str, str]:
  38. value_dict = {}
  39. for p in parts:
  40. p = p.strip()
  41. if not p:
  42. continue
  43. code, num = get_code_and_num(p)
  44. value_dict[code] = num
  45. return value_dict
  46. # ============================
  47. # Math Functions - Begin
  48. # ============================
  49. def calc_distance(pos1, pos2):
  50. delta = {k: pos1[k] - pos2[k] for k in pos1}
  51. distance = 0
  52. for value in delta.values():
  53. distance += value ** 2
  54. distance = math.sqrt(distance)
  55. return distance
  56. ## Given the initial speed, the target speed, and the acceleration, calculate
  57. # the distance that's neede for the acceleration to finish.
  58. def calc_acceleration_distance(init_speed: float, target_speed: float, acceleration: float) -> float:
  59. if acceleration == 0:
  60. return 0.0
  61. return (target_speed ** 2 - init_speed ** 2) / (2 * acceleration)
  62. ## Gives the time it needs to accelerate from an initial speed to reach a final
  63. # distance.
  64. def calc_acceleration_time_from_distance(initial_feedrate: float, distance: float, acceleration: float) -> float:
  65. discriminant = initial_feedrate ** 2 - 2 * acceleration * -distance
  66. #If the discriminant is negative, we're moving in the wrong direction.
  67. #Making the discriminant 0 then gives the extremum of the parabola instead of the intersection.
  68. discriminant = max(0, discriminant)
  69. return (-initial_feedrate + math.sqrt(discriminant)) / acceleration
  70. def calc_travel_time(p0, p1, init_speed: float, target_speed: float, acceleration: float) -> float:
  71. pass
  72. ## Calculates the point at which you must start braking.
  73. #
  74. # This gives the distance from the start of a line at which you must start
  75. # decelerating (at a rate of `-acceleration`) if you started at speed
  76. # `initial_feedrate` and accelerated until this point and want to end at the
  77. # `final_feedrate` after a total travel of `distance`. This can be used to
  78. # compute the intersection point between acceleration and deceleration in the
  79. # cases where the trapezoid has no plateau (i.e. never reaches maximum speed).
  80. def calc_intersection_distance(initial_feedrate: float, final_feedrate: float, acceleration: float, distance: float) -> float:
  81. if acceleration == 0:
  82. return 0
  83. return (2 * acceleration * distance - initial_feedrate * initial_feedrate + final_feedrate * final_feedrate) / (4 * acceleration)
  84. ## Calculates the maximum speed that is allowed at this point when you must be
  85. # able to reach target_velocity using the acceleration within the allotted
  86. # distance.
  87. def calc_max_allowable_speed(acceleration: float, target_velocity: float, distance: float) -> float:
  88. return math.sqrt(target_velocity * target_velocity - 2 * acceleration * distance)
  89. class Command:
  90. def __init__(self, cmd_str: str) -> None:
  91. self._cmd_str = cmd_str # type: str
  92. self._distance_in_mm = 0.0 # type float
  93. self._estimated_exec_time_in_ms = 0.0 # type: float
  94. self._cmd_process_function_map = {
  95. "G": self._handle_g,
  96. "M": self._handle_m,
  97. "T": self._handle_t,
  98. }
  99. self._is_comment = False # type: bool
  100. self._is_empty = False # type: bool
  101. #Fields taken from CuraEngine's implementation.
  102. self._recalculate = False
  103. self._accelerate_until = 0
  104. self._decelerate_after = 0
  105. self._initial_feedrate = 0
  106. self._final_feedrate = 0
  107. self._entry_speed = 0
  108. self._max_entry_speed =0
  109. self._nominal_length = False
  110. self._nominal_feedrate = 0
  111. self._max_travel = 0
  112. self._distance = 0
  113. self._acceleration = 0
  114. self._delta = [0, 0, 0]
  115. self._abs_delta = [0, 0, 0]
  116. ## Calculate the velocity-time trapezoid function for this move.
  117. #
  118. # Each move has a three-part function mapping time to velocity.
  119. def calculate_trapezoid(self, entry_factor, exit_factor):
  120. initial_feedrate = self._nominal_feedrate * entry_factor
  121. final_feedrate = self._nominal_feedrate * exit_factor
  122. #How far are we accelerating and how far are we decelerating?
  123. accelerate_distance = calc_acceleration_distance(initial_feedrate, self._nominal_feedrate, self._acceleration)
  124. decelerate_distance = calc_acceleration_distance(self._nominal_feedrate, final_feedrate, -self._acceleration)
  125. plateau_distance = self._distance - accelerate_distance - decelerate_distance #And how far in between at max speed?
  126. #Is the plateau negative size? That means no cruising, and we'll have to
  127. #use intersection_distance to calculate when to abort acceleration and
  128. #start braking in order to reach the final_rate exactly at the end of
  129. #this command.
  130. if plateau_distance < 0:
  131. accelerate_distance = calc_intersection_distance(initial_feedrate, final_feedrate, self._acceleration, self._distance)
  132. accelerate_distance = max(accelerate_distance, 0) #Due to rounding errors.
  133. accelerate_distance = min(accelerate_distance, self._distance)
  134. plateau_distance = 0
  135. self._accelerate_until = accelerate_distance
  136. self._decelerate_after = accelerate_distance + plateau_distance
  137. self._initial_feedrate = initial_feedrate
  138. self._final_feedrate = final_feedrate
  139. @property
  140. def is_command(self) -> bool:
  141. return not self._is_comment and not self._is_empty
  142. @property
  143. def estimated_exec_time_in_ms(self) -> float:
  144. return self._estimated_exec_time_in_ms
  145. def __str__(self) -> str:
  146. if self._is_comment or self._is_empty:
  147. return self._cmd_str
  148. distance_in_mm = round(self._distance_in_mm, 5)
  149. info = "d=%s t=%s" % (distance_in_mm, self._estimated_exec_time_in_ms)
  150. return self._cmd_str.strip() + " ; --- " + info + os.linesep
  151. ## Estimates the execution time of this command and calculates the state
  152. # after this command is executed.
  153. def parse(self) -> None:
  154. line = self._cmd_str.strip()
  155. if not line:
  156. self._is_empty = True
  157. return
  158. if line.startswith(";"):
  159. self._is_comment = True
  160. return
  161. # Remove comment
  162. line = line.split(";", 1)[0].strip()
  163. parts = line.split(" ")
  164. cmd_code, cmd_num = get_code_and_num(parts[0])
  165. cmd_num = int(cmd_num)
  166. func = self._cmd_process_function_map.get(cmd_code)
  167. if func is None:
  168. print("!!! no handle function for command type [%s]" % cmd_code)
  169. return
  170. func(cmd_num, parts)
  171. def _handle_g(self, cmd_num: int, parts: List[str]) -> None:
  172. estimated_exec_time_in_ms = 0.0
  173. # G10: Retract. Make this behave as if it's a retraction of 25mm.
  174. if cmd_num == 10:
  175. #TODO: If already retracted, this shouldn't add anything to the time.
  176. cmd_num = 1
  177. parts = ["G1", "E" + str(buf.current_position[3] - 25)]
  178. # G11: Unretract. Make this behave as if it's an unretraction of 25mm.
  179. elif cmd_num == 11:
  180. #TODO: If already unretracted
  181. cmd_num = 1
  182. parts = ["G1", "E" + str(buf.current_position[3] + 25)]
  183. # G0 and G1: Move
  184. if cmd_num in (0, 1):
  185. # Move
  186. distance = 0.0
  187. if len(parts) > 0:
  188. value_dict = get_value_dict(parts[1:])
  189. new_position = copy.deepcopy(buf.current_position)
  190. new_position[0] = value_dict.get("X", new_position[0])
  191. new_position[1] = value_dict.get("Y", new_position[1])
  192. new_position[2] = value_dict.get("Z", new_position[2])
  193. new_position[3] = value_dict.get("E", new_position[3])
  194. distance = calc_distance(buf.current_position, new_position)
  195. self._distance_in_mm = distance
  196. self._delta = [
  197. new_position[0] - buf.current_position[0],
  198. new_position[1] - buf.current_position[1],
  199. new_position[2] - buf.current_position[2],
  200. new_position[3] - buf.current_position[3]
  201. ]
  202. self._abs_delta = [abs(x) for x in self._delta]
  203. self._max_travel = max(self._abs_delta)
  204. if self._max_travel > 0:
  205. feedrate = buf.current_feedrate
  206. if "F" in value_dict:
  207. feedrate = value_dict["F"]
  208. if feedrate < MACHINE_MINIMUM_FEEDRATE:
  209. feedrate = MACHINE_MINIMUM_FEEDRATE
  210. self._nominal_feedrate = feedrate
  211. self._distance = math.sqrt(self._abs_delta[0] ** 2 + self._abs_delta[1] ** 2 + self._abs_delta[2] ** 2)
  212. if self._distance == 0:
  213. self._distance = self._abs_delta[3]
  214. current_feedrate = [d * feedrate / self._distance for d in self._delta]
  215. current_abs_feedrate = [abs(f) for f in current_feedrate]
  216. feedrate_factor = min(1.0, MACHINE_MAX_FEEDRATE_X)
  217. feedrate_factor = min(feedrate_factor, MACHINE_MAX_FEEDRATE_Y)
  218. feedrate_factor = min(feedrate_factor, buf.max_z_feedrate)
  219. feedrate_factor = min(feedrate_factor, MACHINE_MAX_FEEDRATE_E)
  220. #TODO: XY_FREQUENCY_LIMIT
  221. current_feedrate = [f * feedrate_factor for f in current_feedrate]
  222. current_abs_feedrate = [f * feedrate_factor for f in current_abs_feedrate]
  223. self._nominal_feedrate *= feedrate_factor
  224. self._acceleration = MACHINE_ACCELERATION
  225. max_accelerations = [MACHINE_MAX_ACCELERATION_X, MACHINE_MAX_ACCELERATION_Y, MACHINE_MAX_ACCELERATION_Z, MACHINE_MAX_ACCELERATION_E]
  226. for n in range(len(max_accelerations)):
  227. if self._acceleration * self._abs_delta[n] / self._distance > max_accelerations[n]:
  228. self._acceleration = max_accelerations[n]
  229. vmax_junction = MACHINE_MAX_JERK_XY / 2
  230. vmax_junction_factor = 1.0
  231. if current_abs_feedrate[2] > buf.max_z_jerk / 2:
  232. vmax_junction = min(vmax_junction, buf.max_z_jerk)
  233. if current_abs_feedrate[3] > buf.max_e_jerk / 2:
  234. vmax_junction = min(vmax_junction, buf.max_e_jerk)
  235. vmax_junction = min(vmax_junction, self._nominal_feedrate)
  236. safe_speed = vmax_junction
  237. if buf.previous_nominal_feedrate > 0.0001:
  238. xy_jerk = math.sqrt((current_feedrate[0] - buf.previous_feedrate[0]) ** 2 + (current_feedrate[1] - buf.previous_feedrate[1]) ** 2)
  239. vmax_junction = self._nominal_feedrate
  240. if xy_jerk > MACHINE_MAX_JERK_XY:
  241. vmax_junction_factor = MACHINE_MAX_JERK_XY / xy_jerk
  242. if abs(current_feedrate[2] - buf.previous_feedrate[2]) > MACHINE_MAX_JERK_Z:
  243. vmax_junction_factor = min(vmax_junction_factor, (MACHINE_MAX_JERK_Z / abs(current_feedrate[2] - buf.previous_feedrate[2])))
  244. if abs(current_feedrate[3] - buf.previous_feedrate[3]) > MACHINE_MAX_JERK_E:
  245. vmax_junction_factor = min(vmax_junction_factor, (MACHINE_MAX_JERK_E / abs(current_feedrate[3] - buf.previous_feedrate[3])))
  246. vmax_junction = min(buf.previous_nominal_feedrate, vmax_junction * vmax_junction_factor) #Limit speed to max previous speed.
  247. self._max_entry_speed = vmax_junction
  248. v_allowable = calc_max_allowable_speed(-self._acceleration, MINIMUM_PLANNER_SPEED, self._distance)
  249. self._entry_speed = min(vmax_junction, v_allowable)
  250. self._nominal_length = self._nominal_feedrate <= v_allowable
  251. self._recalculate = True
  252. buf.previous_feedrate = current_feedrate
  253. buf.previous_nominal_feedrate = self._nominal_feedrate
  254. buf.current_position = new_position
  255. self.calculate_trapezoid(self._entry_speed / self._nominal_feedrate, safe_speed / self._nominal_feedrate)
  256. travel_time_in_ms = -1 #Signal that we need to include this in our second pass.
  257. # G4: Dwell, pause the machine for a period of time. TODO
  258. if cmd_num == 4:
  259. # Pnnn is time to wait in milliseconds (P0 wait until all previous moves are finished)
  260. cmd, num = get_code_and_num(parts[1])
  261. num = float(num)
  262. if cmd == "P":
  263. if num > 0:
  264. estimated_exec_time_in_ms = num
  265. # G90: Set to absolute positioning. Assume 0 seconds.
  266. if cmd_num == 90:
  267. estimated_exec_time_in_ms = 0.0
  268. # G91: Set to relative positioning. Assume 0 seconds.
  269. if cmd_num == 91:
  270. estimated_exec_time_in_ms = 0.0
  271. # G92: Set position. Assume 0 seconds.
  272. if cmd_num == 92:
  273. estimated_exec_time_in_ms = 0.0
  274. # G280: Prime. Assume 10 seconds for using blob and 5 seconds for no blob.
  275. if cmd_num == 280:
  276. use_blob = True
  277. if len(parts) > 1:
  278. cmd, num = get_code_and_num(parts[1])
  279. if cmd == "S" and num == 1:
  280. use_blob = False
  281. estimated_exec_time_in_ms = (10.0 if use_blob else 5.0) * 1000
  282. # Update estimated execution time
  283. self._estimated_exec_time_in_ms = round(estimated_exec_time_in_ms, 5)
  284. def _handle_m(self, cmd_num: int, parts: List[str]) -> None:
  285. estimated_exec_time_in_ms = 0.0
  286. # M82: Set extruder to absolute mode. Assume 0 execution time.
  287. if cmd_num == 82:
  288. estimated_exec_time_in_ms = 0.0
  289. # M83: Set extruder to relative mode. Assume 0 execution time.
  290. if cmd_num == 83:
  291. estimated_exec_time_in_ms = 0.0
  292. # M104: Set extruder temperature (no wait). Assume 0 execution time.
  293. if cmd_num == 104:
  294. estimated_exec_time_in_ms = 0.0
  295. # M106: Set fan speed. Assume 0 execution time.
  296. if cmd_num == 106:
  297. estimated_exec_time_in_ms = 0.0
  298. # M107: Turn fan off. Assume 0 execution time.
  299. if cmd_num == 107:
  300. estimated_exec_time_in_ms = 0.0
  301. # M109: Set extruder temperature (wait). Uniformly random time between 30 - 90 seconds.
  302. if cmd_num == 109:
  303. estimated_exec_time_in_ms = random.uniform(30, 90) * 1000 # TODO: Check
  304. # M140: Set bed temperature (no wait). Assume 0 execution time.
  305. if cmd_num == 140:
  306. estimated_exec_time_in_ms = 0.0
  307. # M203: Set maximum feedrate. Only Z is supported. Assume 0 execution time.
  308. if cmd_num == 203:
  309. value_dict = get_value_dict(parts[1:])
  310. buf.max_z_feedrate = value_dict.get("Z", buf.max_z_feedrate)
  311. # M204: Set default acceleration. Assume 0 execution time.
  312. if cmd_num == 204:
  313. value_dict = get_value_dict(parts[1:])
  314. buf.acceleration = value_dict.get("S", buf.acceleration)
  315. estimated_exec_time_in_ms = 0.0
  316. # M205: Advanced settings, we only set jerks for Griffin. Assume 0 execution time.
  317. if cmd_num == 205:
  318. value_dict = get_value_dict(parts[1:])
  319. buf.max_xy_jerk = value_dict.get("XY", buf.max_xy_jerk)
  320. buf.max_z_jerk = value_dict.get("Z", buf.max_z_jerk)
  321. buf.max_e_jerk = value_dict.get("E", buf.max_e_jerk)
  322. estimated_exec_time_in_ms = 0.0
  323. self._estimated_exec_time_in_ms = estimated_exec_time_in_ms
  324. def _handle_t(self, cmd_num: int, parts: List[str]) -> None:
  325. # Tn: Switching extruder. Assume 2 seconds.
  326. estimated_exec_time_in_ms = 2.0
  327. self._estimated_exec_time_in_ms = estimated_exec_time_in_ms
  328. class CommandBuffer:
  329. def __init__(self, all_lines: List[str],
  330. buffer_filling_rate: float = DEFAULT_BUFFER_FILLING_RATE_IN_C_PER_MS,
  331. buffer_size: int = DEFAULT_BUFFER_SIZE
  332. ) -> None:
  333. self._all_lines = all_lines
  334. self._all_commands = list()
  335. self._buffer_filling_rate = buffer_filling_rate # type: float
  336. self._buffer_size = buffer_size # type: int
  337. self.acceleration = 3000
  338. self.current_position = [0, 0, 0, 0]
  339. self.current_feedrate = 0
  340. self.max_xy_jerk = MACHINE_MAX_JERK_XY
  341. self.max_z_jerk = MACHINE_MAX_JERK_Z
  342. self.max_e_jerk = MACHINE_MAX_JERK_E
  343. self.max_z_feedrate = MACHINE_MAX_FEEDRATE_Z
  344. # If the buffer can depletes less than this amount time, it can be filled up in time.
  345. lower_bound_buffer_depletion_time = self._buffer_size / self._buffer_filling_rate # type: float
  346. self._detection_time_frame = lower_bound_buffer_depletion_time
  347. self._code_count_limit = self._buffer_size
  348. self.previous_feedrate = [0, 0, 0, 0]
  349. self.previous_nominal_feedrate = 0
  350. print("Time Frame: %s" % self._detection_time_frame)
  351. print("Code Limit: %s" % self._code_count_limit)
  352. self._bad_frame_ranges = []
  353. def process(self) -> None:
  354. cmd0_idx = 0
  355. total_frame_time_in_ms = 0.0
  356. cmd_count = 0
  357. for idx, line in enumerate(self._all_lines):
  358. cmd = Command(line)
  359. cmd.parse()
  360. if not cmd.is_command:
  361. continue
  362. self._all_commands.append(cmd)
  363. #Second pass: Reverse kernel.
  364. kernel_commands = [None, None, None]
  365. for cmd in reversed(self._all_commands):
  366. if cmd.estimated_exec_time_in_ms >= 0:
  367. continue #Not a movement command.
  368. kernel_commands[2] = kernel_commands[1]
  369. kernel_commands[1] = kernel_commands[0]
  370. kernel_commands[0] = cmd
  371. self.reverse_pass_kernel(kernel_commands[0], kernel_commands[1], kernel_commands[2])
  372. #Third pass: Forward kernel.
  373. kernel_commands = [None, None, None]
  374. for cmd in self._all_commands:
  375. if cmd.estimated_exec_time_in_ms >= 0:
  376. continue #Not a movement command.
  377. kernel_commands[2] = kernel_commands[1]
  378. kernel_commands[1] = kernel_commands[0]
  379. kernel_commands[0] = cmd
  380. self.forward_pass_kernel(kernel_commands[0], kernel_commands[1], kernel_commands[2])
  381. self.forward_pass_kernel(kernel_commands[1], kernel_commands[2], None)
  382. #Fourth pass: Recalculate the commands that have _recalculate set.
  383. previous = None
  384. current = None
  385. for current in self._all_commands:
  386. if current.estimated_exec_time_in_ms >= 0:
  387. continue #Not a movement command.
  388. if previous:
  389. #Recalculate if current command entry or exit junction speed has changed.
  390. if previous._recalculate or current._recalculate:
  391. #Note: Entry and exit factors always >0 by all previous logic operators.
  392. previous.calculate_trapezoid(previous._entry_speed / previous._nominal_feedrate, current._entry_speed / previous._nominal_feedrate)
  393. previous._recalculate = False
  394. previous = current
  395. if current is not None:
  396. current.calculate_trapezoid(current._entry_speed / current._nominal_feedrate, MINIMUM_PLANNER_SPEED / current._nominal_feedrate)
  397. current._recalculate = False
  398. #Fifth pass: Compute time for movement commands.
  399. for cmd in self._all_commands:
  400. if cmd.estimated_exec_time_in_ms >= 0:
  401. continue #Not a movement command.
  402. plateau_distance = cmd._decelerate_after - cmd._accelerate_until
  403. cmd.estimated_exec_time_in_ms = calc_acceleration_time_from_distance(cmd._initial_feedrate, cmd._accelerate_until, cmd._acceleration)
  404. cmd.estimated_exec_time_in_ms += plateau_distance / cmd._nominal_feedrate
  405. cmd.estimated_exec_time_in_ms += calc_acceleration_time_from_distance(cmd._final_feedrate, (cmd._distancd - cmd._decelerate_after), cmd._acceleration)
  406. for idx, cmd in enumerate(self._all_commands):
  407. cmd_count += 1
  408. if idx > cmd0_idx or idx == 0:
  409. total_frame_time_in_ms += cmd.estimated_exec_time_in_ms
  410. if total_frame_time_in_ms > 1000.0:
  411. # Find the next starting command which makes the total execution time of the frame to be less than
  412. # 1 second.
  413. cmd0_idx += 1
  414. total_frame_time_in_ms -= self._all_commands[cmd0_idx].estimated_exec_time_in_ms
  415. cmd_count -= 1
  416. while total_frame_time_in_ms > 1000.0:
  417. cmd0_idx += 1
  418. total_frame_time_in_ms -= self._all_commands[cmd0_idx].estimated_exec_time_in_ms
  419. cmd_count -= 1
  420. # If within the current time frame the code count exceeds the limit, record that.
  421. if total_frame_time_in_ms <= self._detection_time_frame and cmd_count > self._code_count_limit:
  422. need_to_append = True
  423. if self._bad_frame_ranges:
  424. last_item = self._bad_frame_ranges[-1]
  425. if last_item["start_line"] == cmd0_idx:
  426. last_item["end_line"] = idx
  427. last_item["cmd_count"] = cmd_count
  428. last_item["time_in_ms"] = total_frame_time_in_ms
  429. need_to_append = False
  430. if need_to_append:
  431. self._bad_frame_ranges.append({"start_line": cmd0_idx,
  432. "end_line": idx,
  433. "cmd_count": cmd_count,
  434. "time_in_ms": total_frame_time_in_ms})
  435. def reverse_pass_kernel(self, previous: Optional[Command], current: Optional[Command], next: Optional[Command]) -> None:
  436. if not previous:
  437. return
  438. #If entry speed is already at the maximum entry speed, no need to
  439. #recheck. The command is cruising. If not, the command is in state of
  440. #acceleration or deceleration. Reset entry speed to maximum and check
  441. #for maximum allowable speed reductions to ensure maximum possible
  442. #planned speed.
  443. if current._entry_speed != current._max_entry_speed:
  444. #If nominal length is true, max junction speed is guaranteed to be
  445. #reached. Only compute for max allowable speed if block is
  446. #decelerating and nominal length is false.
  447. if not current._nominal_length and current._max_entry_speed > next._max_entry_speed:
  448. current._entry_speed = min(current._max_entry_speed, calc_max_allowable_speed(-current._acceleration, next._entry_speed, current._distance))
  449. else:
  450. current._entry_speed = current._max_entry_speed
  451. current._recalculate = True
  452. def forward_pass_kernel(self, previous: Optional[Command], current: Optional[Command], next: Optional[Command]) -> None:
  453. if not previous:
  454. return
  455. #If the previous command is an acceleration command, but it is not long
  456. #enough to complete the full speed change within the command, we need to
  457. #adjust the entry speed accordingly. Entry speeds have already been
  458. #reset, maximised and reverse planned by the reverse planner. If nominal
  459. #length is set, max junction speed is guaranteed to be reached. No need
  460. #to recheck.
  461. if not previous._nominal_length:
  462. if previous._entry_speed < current._entry_speed:
  463. entry_speed = min(current._entry_speed, calc_max_allowable_speed(-previous._acceleration, previous._entry_speed, previous._distance))
  464. if current._entry_speed != entry_speed:
  465. current._entry_speed = entry_speed
  466. current._recalculate = True
  467. def to_file(self, file_name: str) -> None:
  468. all_lines = [str(c) for c in self._all_commands]
  469. with open(file_name, "w", encoding = "utf-8") as f:
  470. f.writelines(all_lines)
  471. def report(self) -> None:
  472. for item in self._bad_frame_ranges:
  473. print("!!!!! potential bad frame from line %s to %s, code count = %s, in %s ms" % (
  474. item["start_line"], item["end_line"], item["cmd_count"], round(item["time_in_ms"], 4)))
  475. if __name__ == "__main__":
  476. if len(sys.argv) != 3:
  477. print("Usage: <input gcode> <output gcode>")
  478. sys.exit(1)
  479. in_filename = sys.argv[1]
  480. out_filename = sys.argv[2]
  481. with open(in_filename, "r", encoding = "utf-8") as f:
  482. all_lines = f.readlines()
  483. buf = CommandBuffer(all_lines)
  484. buf.process()
  485. buf.to_file(out_filename)
  486. buf.report()