LayerPolygon.py 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285
  1. # Copyright (c) 2019 Ultimaker B.V.
  2. # Cura is released under the terms of the LGPLv3 or higher.
  3. import numpy
  4. from typing import Optional, cast
  5. from UM.Qt.Bindings.Theme import Theme
  6. from UM.Qt.QtApplication import QtApplication
  7. from UM.Logger import Logger
  8. class LayerPolygon:
  9. NoneType = 0
  10. Inset0Type = 1
  11. InsetXType = 2
  12. SkinType = 3
  13. SupportType = 4
  14. SkirtType = 5
  15. InfillType = 6
  16. SupportInfillType = 7
  17. MoveCombingType = 8
  18. MoveRetractionType = 9
  19. SupportInterfaceType = 10
  20. PrimeTowerType = 11
  21. __number_of_types = 12
  22. __jump_map = numpy.logical_or(numpy.logical_or(numpy.arange(__number_of_types) == NoneType, numpy.arange(__number_of_types) == MoveCombingType), numpy.arange(__number_of_types) == MoveRetractionType)
  23. def __init__(self, extruder: int, line_types: numpy.ndarray, data: numpy.ndarray, line_widths: numpy.ndarray, line_thicknesses: numpy.ndarray, line_feedrates: numpy.ndarray) -> None:
  24. """LayerPolygon, used in ProcessSlicedLayersJob
  25. :param extruder: The position of the extruder
  26. :param line_types: array with line_types
  27. :param data: new_points
  28. :param line_widths: array with line widths
  29. :param line_thicknesses: array with type as index and thickness as value
  30. :param line_feedrates: array with line feedrates
  31. """
  32. self._extruder = extruder
  33. self._types = line_types
  34. for i in range(len(self._types)):
  35. if self._types[i] >= self.__number_of_types: # Got faulty line data from the engine.
  36. Logger.log("w", "Found an unknown line type: %s", i)
  37. self._types[i] = self.NoneType
  38. self._data = data
  39. self._line_widths = line_widths
  40. self._line_thicknesses = line_thicknesses
  41. self._line_feedrates = line_feedrates
  42. self._vertex_begin = 0
  43. self._vertex_end = 0
  44. self._index_begin = 0
  45. self._index_end = 0
  46. self._jump_mask = self.__jump_map[self._types]
  47. self._jump_count = numpy.sum(self._jump_mask)
  48. self._cumulative_type_change_counts = numpy.zeros(len(self._types)) # See the comment on the 'cumulativeTypeChangeCounts' property below.
  49. last_type = self.types[0]
  50. current_type_count = 0
  51. for i in range(0, len(self._cumulative_type_change_counts)):
  52. if last_type != self.types[i]:
  53. current_type_count += 1
  54. last_type = self.types[i]
  55. self._cumulative_type_change_counts[i] = current_type_count
  56. self._mesh_line_count = len(self._types) - self._jump_count
  57. self._vertex_count = self._mesh_line_count + numpy.sum(self._types[1:] == self._types[:-1])
  58. # Buffering the colors shouldn't be necessary as it is not
  59. # re-used and can save a lot of memory usage.
  60. self._color_map = LayerPolygon.getColorMap()
  61. self._colors = self._color_map[self._types] # type: numpy.ndarray
  62. # When type is used as index returns true if type == LayerPolygon.InfillType or type == LayerPolygon.SkinType or type == LayerPolygon.SupportInfillType
  63. # Should be generated in better way, not hardcoded.
  64. self._is_infill_or_skin_type_map = numpy.array([0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0], dtype = bool)
  65. self._build_cache_line_mesh_mask = None # type: Optional[numpy.ndarray]
  66. self._build_cache_needed_points = None # type: Optional[numpy.ndarray]
  67. def buildCache(self) -> None:
  68. # For the line mesh we do not draw Infill or Jumps. Therefore those lines are filtered out.
  69. self._build_cache_line_mesh_mask = numpy.ones(self._jump_mask.shape, dtype = bool)
  70. self._index_begin = 0
  71. self._index_end = cast(int, numpy.sum(self._build_cache_line_mesh_mask))
  72. self._build_cache_needed_points = numpy.ones((len(self._types), 2), dtype = bool)
  73. # Only if the type of line segment changes do we need to add an extra vertex to change colors
  74. self._build_cache_needed_points[1:, 0][:, numpy.newaxis] = self._types[1:] != self._types[:-1]
  75. # Mark points as unneeded if they are of types we don't want in the line mesh according to the calculated mask
  76. numpy.logical_and(self._build_cache_needed_points, self._build_cache_line_mesh_mask, self._build_cache_needed_points )
  77. self._vertex_begin = 0
  78. self._vertex_end = cast(int, numpy.sum(self._build_cache_needed_points))
  79. def build(self, vertex_offset: int, index_offset: int, vertices: numpy.ndarray, colors: numpy.ndarray, line_dimensions: numpy.ndarray, feedrates: numpy.ndarray, extruders: numpy.ndarray, line_types: numpy.ndarray, indices: numpy.ndarray) -> None:
  80. """Set all the arrays provided by the function caller, representing the LayerPolygon
  81. The arrays are either by vertex or by indices.
  82. :param vertex_offset: determines where to start and end filling the arrays
  83. :param index_offset: determines where to start and end filling the arrays
  84. :param vertices: vertex numpy array to be filled
  85. :param colors: vertex numpy array to be filled
  86. :param line_dimensions: vertex numpy array to be filled
  87. :param feedrates: vertex numpy array to be filled
  88. :param extruders: vertex numpy array to be filled
  89. :param line_types: vertex numpy array to be filled
  90. :param indices: index numpy array to be filled
  91. """
  92. if self._build_cache_line_mesh_mask is None or self._build_cache_needed_points is None:
  93. self.buildCache()
  94. if self._build_cache_line_mesh_mask is None or self._build_cache_needed_points is None:
  95. Logger.log("w", "Failed to build cache for layer polygon")
  96. return
  97. line_mesh_mask = self._build_cache_line_mesh_mask
  98. needed_points_list = self._build_cache_needed_points
  99. # Index to the points we need to represent the line mesh. This is constructed by generating simple
  100. # start and end points for each line. For line segment n these are points n and n+1. Row n reads [n n+1]
  101. # Then then the indices for the points we don't need are thrown away based on the pre-calculated list.
  102. index_list = ( numpy.arange(len(self._types)).reshape((-1, 1)) + numpy.array([[0, 1]]) ).reshape((-1, 1))[needed_points_list.reshape((-1, 1))]
  103. # The relative values of begin and end indices have already been set in buildCache, so we only need to offset them to the parents offset.
  104. self._vertex_begin += vertex_offset
  105. self._vertex_end += vertex_offset
  106. # Points are picked based on the index list to get the vertices needed.
  107. vertices[self._vertex_begin:self._vertex_end, :] = self._data[index_list, :]
  108. # Create an array with colors for each vertex and remove the color data for the points that has been thrown away.
  109. colors[self._vertex_begin:self._vertex_end, :] = numpy.tile(self._colors, (1, 2)).reshape((-1, 4))[needed_points_list.ravel()]
  110. # Create an array with line widths and thicknesses for each vertex.
  111. line_dimensions[self._vertex_begin:self._vertex_end, 0] = numpy.tile(self._line_widths, (1, 2)).reshape((-1, 1))[needed_points_list.ravel()][:, 0]
  112. line_dimensions[self._vertex_begin:self._vertex_end, 1] = numpy.tile(self._line_thicknesses, (1, 2)).reshape((-1, 1))[needed_points_list.ravel()][:, 0]
  113. # Create an array with feedrates for each line
  114. feedrates[self._vertex_begin:self._vertex_end] = numpy.tile(self._line_feedrates, (1, 2)).reshape((-1, 1))[needed_points_list.ravel()][:, 0]
  115. extruders[self._vertex_begin:self._vertex_end] = self._extruder
  116. # Convert type per vertex to type per line
  117. line_types[self._vertex_begin:self._vertex_end] = numpy.tile(self._types, (1, 2)).reshape((-1, 1))[needed_points_list.ravel()][:, 0]
  118. # The relative values of begin and end indices have already been set in buildCache, so we only need to offset them to the parents offset.
  119. self._index_begin += index_offset
  120. self._index_end += index_offset
  121. indices[self._index_begin:self._index_end, :] = numpy.arange(self._index_end-self._index_begin, dtype = numpy.int32).reshape((-1, 1))
  122. # When the line type changes the index needs to be increased by 2.
  123. indices[self._index_begin:self._index_end, :] += numpy.cumsum(needed_points_list[line_mesh_mask.ravel(), 0], dtype = numpy.int32).reshape((-1, 1))
  124. # Each line segment goes from it's starting point p to p+1, offset by the vertex index.
  125. # The -1 is to compensate for the necessarily True value of needed_points_list[0,0] which causes an unwanted +1 in cumsum above.
  126. indices[self._index_begin:self._index_end, :] += numpy.array([self._vertex_begin - 1, self._vertex_begin])
  127. self._build_cache_line_mesh_mask = None
  128. self._build_cache_needed_points = None
  129. def getColors(self):
  130. return self._colors
  131. def mapLineTypeToColor(self, line_types: numpy.ndarray) -> numpy.ndarray:
  132. return self._color_map[line_types]
  133. def isInfillOrSkinType(self, line_types: numpy.ndarray) -> numpy.ndarray:
  134. return self._is_infill_or_skin_type_map[line_types]
  135. def lineMeshVertexCount(self) -> int:
  136. return self._vertex_end - self._vertex_begin
  137. def lineMeshElementCount(self) -> int:
  138. return self._index_end - self._index_begin
  139. @property
  140. def extruder(self):
  141. return self._extruder
  142. @property
  143. def types(self):
  144. return self._types
  145. @property
  146. def data(self):
  147. return self._data
  148. @property
  149. def vertexCount(self):
  150. return self._vertex_end - self._vertex_begin
  151. @property
  152. def elementCount(self):
  153. return (self._index_end - self._index_begin) * 2 # The range of vertices multiplied by 2 since each vertex is used twice
  154. @property
  155. def lineWidths(self):
  156. return self._line_widths
  157. @property
  158. def lineThicknesses(self):
  159. return self._line_thicknesses
  160. @property
  161. def lineFeedrates(self):
  162. return self._line_feedrates
  163. @property
  164. def jumpMask(self):
  165. return self._jump_mask
  166. @property
  167. def meshLineCount(self):
  168. return self._mesh_line_count
  169. @property
  170. def jumpCount(self):
  171. return self._jump_count
  172. @property
  173. def cumulativeTypeChangeCounts(self):
  174. """ This polygon class stores with a vertex the type of the line to the next vertex. However, in other contexts,
  175. other ways of representing this might be more suited to the task (for example, when a vertex can possibly only
  176. have _one_ type, it's unavoidable to duplicate vertices when the type is changed). In such situations it's might
  177. be useful to know how many times the type has changed, in order to keep the various vertex-indices aligned.
  178. :return: The total times the line-type changes from one type to another within this LayerPolygon.
  179. """
  180. return self._cumulative_type_change_counts
  181. def getNormals(self) -> numpy.ndarray:
  182. """Calculate normals for the entire polygon using numpy.
  183. :return: normals for the entire polygon
  184. """
  185. normals = numpy.copy(self._data)
  186. normals[:, 1] = 0.0 # We are only interested in 2D normals
  187. # Calculate the edges between points.
  188. # The call to numpy.roll shifts the entire array by one so that
  189. # we end up subtracting each next point from the current, wrapping
  190. # around. This gives us the edges from the next point to the current
  191. # point.
  192. normals = numpy.diff(normals, 1, 0)
  193. # Calculate the length of each edge using standard Pythagoras
  194. lengths = numpy.sqrt(normals[:, 0] ** 2 + normals[:, 2] ** 2)
  195. # The normal of a 2D vector is equal to its x and y coordinates swapped
  196. # and then x inverted. This code does that.
  197. normals[:, [0, 2]] = normals[:, [2, 0]]
  198. normals[:, 0] *= -1
  199. # Normalize the normals.
  200. normals[:, 0] /= lengths
  201. normals[:, 2] /= lengths
  202. return normals
  203. __color_map = None # type: numpy.ndarray
  204. @classmethod
  205. def getColorMap(cls) -> numpy.ndarray:
  206. """Gets the instance of the VersionUpgradeManager, or creates one."""
  207. if cls.__color_map is None:
  208. theme = cast(Theme, QtApplication.getInstance().getTheme())
  209. cls.__color_map = numpy.array([
  210. theme.getColor("layerview_none").getRgbF(), # NoneType
  211. theme.getColor("layerview_inset_0").getRgbF(), # Inset0Type
  212. theme.getColor("layerview_inset_x").getRgbF(), # InsetXType
  213. theme.getColor("layerview_skin").getRgbF(), # SkinType
  214. theme.getColor("layerview_support").getRgbF(), # SupportType
  215. theme.getColor("layerview_skirt").getRgbF(), # SkirtType
  216. theme.getColor("layerview_infill").getRgbF(), # InfillType
  217. theme.getColor("layerview_support_infill").getRgbF(), # SupportInfillType
  218. theme.getColor("layerview_move_combing").getRgbF(), # MoveCombingType
  219. theme.getColor("layerview_move_retraction").getRgbF(), # MoveRetractionType
  220. theme.getColor("layerview_support_interface").getRgbF(), # SupportInterfaceType
  221. theme.getColor("layerview_prime_tower").getRgbF() # PrimeTowerType
  222. ])
  223. return cls.__color_map