Stretch.py 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497
  1. # This PostProcessingPlugin script is released under the terms of the AGPLv3 or higher.
  2. """
  3. Copyright (c) 2017 Christophe Baribaud 2017
  4. Python implementation of https://github.com/electrocbd/post_stretch
  5. Correction of hole sizes, cylinder diameters and curves
  6. See the original description in https://github.com/electrocbd/post_stretch
  7. WARNING This script has never been tested with several extruders
  8. """
  9. from ..Script import Script
  10. import numpy as np
  11. from UM.Logger import Logger
  12. from UM.Application import Application
  13. import re
  14. from cura.Settings.ExtruderManager import ExtruderManager
  15. def _getValue(line, key, default=None):
  16. """
  17. Convenience function that finds the value in a line of g-code.
  18. When requesting key = x from line "G1 X100" the value 100 is returned.
  19. It is a copy of Stript's method, so it is no DontRepeatYourself, but
  20. I split the class into setup part (Stretch) and execution part (Strecher)
  21. and only the setup part inherits from Script
  22. """
  23. if not key in line or (";" in line and line.find(key) > line.find(";")):
  24. return default
  25. sub_part = line[line.find(key) + 1:]
  26. number = re.search(r"^-?[0-9]+\.?[0-9]*", sub_part)
  27. if number is None:
  28. return default
  29. return float(number.group(0))
  30. class GCodeStep():
  31. """
  32. Class to store the current value of each G_Code parameter
  33. for any G-Code step
  34. """
  35. def __init__(self, step, in_relative_movement: bool = False):
  36. self.step = step
  37. self.step_x = 0
  38. self.step_y = 0
  39. self.step_z = 0
  40. self.step_e = 0
  41. self.step_f = 0
  42. self.in_relative_movement = in_relative_movement
  43. self.comment = ""
  44. def readStep(self, line):
  45. """
  46. Reads gcode from line into self
  47. """
  48. if not self.in_relative_movement:
  49. self.step_x = _getValue(line, "X", self.step_x)
  50. self.step_y = _getValue(line, "Y", self.step_y)
  51. self.step_z = _getValue(line, "Z", self.step_z)
  52. self.step_e = _getValue(line, "E", self.step_e)
  53. self.step_f = _getValue(line, "F", self.step_f)
  54. else:
  55. delta_step_x = _getValue(line, "X", 0)
  56. delta_step_y = _getValue(line, "Y", 0)
  57. delta_step_z = _getValue(line, "Z", 0)
  58. delta_step_e = _getValue(line, "E", 0)
  59. delta_step_f = _getValue(line, "F", 0)
  60. self.step_x += delta_step_x
  61. self.step_y += delta_step_y
  62. self.step_z += delta_step_z
  63. self.step_e += delta_step_e
  64. self.step_f += delta_step_f
  65. def copyPosFrom(self, step):
  66. """
  67. Copies positions of step into self
  68. """
  69. self.step_x = step.step_x
  70. self.step_y = step.step_y
  71. self.step_z = step.step_z
  72. self.step_e = step.step_e
  73. self.step_f = step.step_f
  74. self.comment = step.comment
  75. def setInRelativeMovement(self, value: bool) -> None:
  76. self.in_relative_movement = value
  77. # Execution part of the stretch plugin
  78. class Stretcher():
  79. """
  80. Execution part of the stretch algorithm
  81. """
  82. def __init__(self, line_width, wc_stretch, pw_stretch):
  83. self.line_width = line_width
  84. self.wc_stretch = wc_stretch
  85. self.pw_stretch = pw_stretch
  86. if self.pw_stretch > line_width / 4:
  87. self.pw_stretch = line_width / 4 # Limit value of pushwall stretch distance
  88. self.outpos = GCodeStep(0)
  89. self.vd1 = np.empty((0, 2)) # Start points of segments
  90. # of already deposited material for current layer
  91. self.vd2 = np.empty((0, 2)) # End points of segments
  92. # of already deposited material for current layer
  93. self.layer_z = 0 # Z position of the extrusion moves of the current layer
  94. self.layergcode = ""
  95. self._in_relative_movement = False
  96. def execute(self, data):
  97. """
  98. Computes the new X and Y coordinates of all g-code steps
  99. """
  100. Logger.log("d", "Post stretch with line width " + str(self.line_width)
  101. + "mm wide circle stretch " + str(self.wc_stretch)+ "mm"
  102. + " and push wall stretch " + str(self.pw_stretch) + "mm")
  103. retdata = []
  104. layer_steps = []
  105. in_relative_movement = False
  106. current = GCodeStep(0, in_relative_movement)
  107. self.layer_z = 0.
  108. current_e = 0.
  109. for layer in data:
  110. lines = layer.rstrip("\n").split("\n")
  111. for line in lines:
  112. current.comment = ""
  113. if line.find(";") >= 0:
  114. current.comment = line[line.find(";"):]
  115. if _getValue(line, "G") == 0:
  116. current.readStep(line)
  117. onestep = GCodeStep(0, in_relative_movement)
  118. onestep.copyPosFrom(current)
  119. elif _getValue(line, "G") == 1:
  120. current.readStep(line)
  121. onestep = GCodeStep(1, in_relative_movement)
  122. onestep.copyPosFrom(current)
  123. # end of relative movement
  124. elif _getValue(line, "G") == 90:
  125. in_relative_movement = False
  126. # start of relative movement
  127. elif _getValue(line, "G") == 91:
  128. in_relative_movement = True
  129. elif _getValue(line, "G") == 92:
  130. current.readStep(line)
  131. onestep = GCodeStep(-1, in_relative_movement)
  132. onestep.copyPosFrom(current)
  133. else:
  134. onestep = GCodeStep(-1, in_relative_movement)
  135. onestep.copyPosFrom(current)
  136. onestep.comment = line
  137. if line.find(";LAYER:") >= 0 and len(layer_steps):
  138. # Previous plugin "forgot" to separate two layers...
  139. Logger.log("d", "Layer Z " + "{:.3f}".format(self.layer_z)
  140. + " " + str(len(layer_steps)) + " steps")
  141. retdata.append(self.processLayer(layer_steps))
  142. layer_steps = []
  143. layer_steps.append(onestep)
  144. # self.layer_z is the z position of the last extrusion move (not travel move)
  145. if current.step_z != self.layer_z and current.step_e != current_e:
  146. self.layer_z = current.step_z
  147. current_e = current.step_e
  148. if len(layer_steps): # Force a new item in the array
  149. Logger.log("d", "Layer Z " + "{:.3f}".format(self.layer_z)
  150. + " " + str(len(layer_steps)) + " steps")
  151. retdata.append(self.processLayer(layer_steps))
  152. layer_steps = []
  153. retdata.append(";Wide circle stretch distance " + str(self.wc_stretch) + "\n")
  154. retdata.append(";Push wall stretch distance " + str(self.pw_stretch) + "\n")
  155. return retdata
  156. def extrusionBreak(self, layer_steps, i_pos):
  157. """
  158. Returns true if the command layer_steps[i_pos] breaks the extruded filament
  159. i.e. it is a travel move
  160. """
  161. if i_pos == 0:
  162. return True # Begining a layer always breaks filament (for simplicity)
  163. step = layer_steps[i_pos]
  164. prev_step = layer_steps[i_pos - 1]
  165. if step.step_e != prev_step.step_e:
  166. return False
  167. delta_x = step.step_x - prev_step.step_x
  168. delta_y = step.step_y - prev_step.step_y
  169. if delta_x * delta_x + delta_y * delta_y < self.line_width * self.line_width / 4:
  170. # This is a very short movement, less than 0.5 * line_width
  171. # It does not break filament, we should stay in the same extrusion sequence
  172. return False
  173. return True # New sequence
  174. def processLayer(self, layer_steps):
  175. """
  176. Computes the new coordinates of g-code steps
  177. for one layer (all the steps at the same Z coordinate)
  178. """
  179. self.outpos.step_x = -1000 # Force output of X and Y coordinates
  180. self.outpos.step_y = -1000 # at each start of layer
  181. self.layergcode = ""
  182. self.vd1 = np.empty((0, 2))
  183. self.vd2 = np.empty((0, 2))
  184. orig_seq = np.empty((0, 2))
  185. modif_seq = np.empty((0, 2))
  186. iflush = 0
  187. for i, step in enumerate(layer_steps):
  188. if step.step == 0 or step.step == 1:
  189. if self.extrusionBreak(layer_steps, i):
  190. # No extrusion since the previous step, so it is a travel move
  191. # Let process steps accumulated into orig_seq,
  192. # which are a sequence of continuous extrusion
  193. modif_seq = np.copy(orig_seq)
  194. if len(orig_seq) >= 2:
  195. self.workOnSequence(orig_seq, modif_seq)
  196. self.generate(layer_steps, iflush, i, modif_seq)
  197. iflush = i
  198. orig_seq = np.empty((0, 2))
  199. orig_seq = np.concatenate([orig_seq, np.array([[step.step_x, step.step_y]])])
  200. if len(orig_seq):
  201. modif_seq = np.copy(orig_seq)
  202. if len(orig_seq) >= 2:
  203. self.workOnSequence(orig_seq, modif_seq)
  204. self.generate(layer_steps, iflush, len(layer_steps), modif_seq)
  205. return self.layergcode
  206. def stepToGcode(self, onestep):
  207. """
  208. Converts a step into G-Code
  209. For each of the X, Y, Z, E and F parameter,
  210. the parameter is written only if its value changed since the
  211. previous g-code step.
  212. """
  213. sout = ""
  214. if onestep.step_f != self.outpos.step_f:
  215. self.outpos.step_f = onestep.step_f
  216. sout += " F{:.0f}".format(self.outpos.step_f).rstrip(".")
  217. if onestep.step_x != self.outpos.step_x or onestep.step_y != self.outpos.step_y:
  218. assert onestep.step_x >= -1000 and onestep.step_x < 1000 # If this assertion fails,
  219. # something went really wrong !
  220. self.outpos.step_x = onestep.step_x
  221. sout += " X{:.3f}".format(self.outpos.step_x).rstrip("0").rstrip(".")
  222. assert onestep.step_y >= -1000 and onestep.step_y < 1000 # If this assertion fails,
  223. # something went really wrong !
  224. self.outpos.step_y = onestep.step_y
  225. sout += " Y{:.3f}".format(self.outpos.step_y).rstrip("0").rstrip(".")
  226. if onestep.step_z != self.outpos.step_z or onestep.step_z != self.layer_z:
  227. self.outpos.step_z = onestep.step_z
  228. sout += " Z{:.3f}".format(self.outpos.step_z).rstrip("0").rstrip(".")
  229. if onestep.step_e != self.outpos.step_e:
  230. self.outpos.step_e = onestep.step_e
  231. sout += " E{:.5f}".format(self.outpos.step_e).rstrip("0").rstrip(".")
  232. return sout
  233. def generate(self, layer_steps, ibeg, iend, orig_seq):
  234. """
  235. Appends g-code lines to the plugin's returned string
  236. starting from step ibeg included and until step iend excluded
  237. """
  238. ipos = 0
  239. for i in range(ibeg, iend):
  240. if layer_steps[i].step == 0:
  241. layer_steps[i].step_x = orig_seq[ipos][0]
  242. layer_steps[i].step_y = orig_seq[ipos][1]
  243. sout = "G0" + self.stepToGcode(layer_steps[i])
  244. self.layergcode = self.layergcode + sout + "\n"
  245. ipos = ipos + 1
  246. elif layer_steps[i].step == 1:
  247. layer_steps[i].step_x = orig_seq[ipos][0]
  248. layer_steps[i].step_y = orig_seq[ipos][1]
  249. sout = "G1" + self.stepToGcode(layer_steps[i])
  250. self.layergcode = self.layergcode + sout + "\n"
  251. ipos = ipos + 1
  252. else:
  253. self.layergcode = self.layergcode + layer_steps[i].comment + "\n"
  254. def workOnSequence(self, orig_seq, modif_seq):
  255. """
  256. Computes new coordinates for a sequence
  257. A sequence is a list of consecutive g-code steps
  258. of continuous material extrusion
  259. """
  260. d_contact = self.line_width / 2.0
  261. if (len(orig_seq) > 2 and
  262. ((orig_seq[len(orig_seq) - 1] - orig_seq[0]) ** 2).sum(0) < d_contact * d_contact):
  263. # Starting and ending point of the sequence are nearby
  264. # It is a closed loop
  265. #self.layergcode = self.layergcode + ";wideCircle\n"
  266. self.wideCircle(orig_seq, modif_seq)
  267. else:
  268. #self.layergcode = self.layergcode + ";wideTurn\n"
  269. self.wideTurn(orig_seq, modif_seq) # It is an open curve
  270. if len(orig_seq) > 6: # Don't try push wall on a short sequence
  271. self.pushWall(orig_seq, modif_seq)
  272. if len(orig_seq):
  273. self.vd1 = np.concatenate([self.vd1, np.array(orig_seq[:-1])])
  274. self.vd2 = np.concatenate([self.vd2, np.array(orig_seq[1:])])
  275. def wideCircle(self, orig_seq, modif_seq):
  276. """
  277. Similar to wideTurn
  278. The first and last point of the sequence are the same,
  279. so it is possible to extend the end of the sequence
  280. with its beginning when seeking for triangles
  281. It is necessary to find the direction of the curve, knowing three points (a triangle)
  282. If the triangle is not wide enough, there is a huge risk of finding
  283. an incorrect orientation, due to insufficient accuracy.
  284. So, when the consecutive points are too close, the method
  285. use following and preceding points to form a wider triangle around
  286. the current point
  287. dmin_tri is the minimum distance between two consecutive points
  288. of an acceptable triangle
  289. """
  290. dmin_tri = 0.5
  291. iextra_base = np.floor_divide(len(orig_seq), 3) # Nb of extra points
  292. ibeg = 0 # Index of first point of the triangle
  293. iend = 0 # Index of the third point of the triangle
  294. for i, step in enumerate(orig_seq):
  295. if i == 0 or i == len(orig_seq) - 1:
  296. # First and last point of the sequence are the same,
  297. # so it is necessary to skip one of these two points
  298. # when creating a triangle containing the first or the last point
  299. iextra = iextra_base + 1
  300. else:
  301. iextra = iextra_base
  302. # i is the index of the second point of the triangle
  303. # pos_after is the array of positions of the original sequence
  304. # after the current point
  305. pos_after = np.resize(np.roll(orig_seq, -i-1, 0), (iextra, 2))
  306. # Vector of distances between the current point and each following point
  307. dist_from_point = ((step - pos_after) ** 2).sum(1)
  308. if np.amax(dist_from_point) < dmin_tri * dmin_tri:
  309. continue
  310. iend = np.argmax(dist_from_point >= dmin_tri * dmin_tri)
  311. # pos_before is the array of positions of the original sequence
  312. # before the current point
  313. pos_before = np.resize(np.roll(orig_seq, -i, 0)[::-1], (iextra, 2))
  314. # This time, vector of distances between the current point and each preceding point
  315. dist_from_point = ((step - pos_before) ** 2).sum(1)
  316. if np.amax(dist_from_point) < dmin_tri * dmin_tri:
  317. continue
  318. ibeg = np.argmax(dist_from_point >= dmin_tri * dmin_tri)
  319. # See https://github.com/electrocbd/post_stretch for explanations
  320. # relpos is the relative position of the projection of the second point
  321. # of the triangle on the segment from the first to the third point
  322. # 0 means the position of the first point, 1 means the position of the third,
  323. # intermediate values are positions between
  324. length_base = ((pos_after[iend] - pos_before[ibeg]) ** 2).sum(0)
  325. relpos = ((step - pos_before[ibeg])
  326. * (pos_after[iend] - pos_before[ibeg])).sum(0)
  327. if np.fabs(relpos) < 1000.0 * np.fabs(length_base):
  328. relpos /= length_base
  329. else:
  330. relpos = 0.5 # To avoid division by zero or precision loss
  331. projection = (pos_before[ibeg] + relpos * (pos_after[iend] - pos_before[ibeg]))
  332. dist_from_proj = np.sqrt(((projection - step) ** 2).sum(0))
  333. if dist_from_proj > 0.0003: # Move central point only if points are not aligned
  334. modif_seq[i] = (step - (self.wc_stretch / dist_from_proj)
  335. * (projection - step))
  336. return
  337. def wideTurn(self, orig_seq, modif_seq):
  338. '''
  339. We have to select three points in order to form a triangle
  340. These three points should be far enough from each other to have
  341. a reliable estimation of the orientation of the current turn
  342. '''
  343. dmin_tri = self.line_width / 2.0
  344. ibeg = 0
  345. iend = 2
  346. for i in range(1, len(orig_seq) - 1):
  347. dist_from_point = ((orig_seq[i] - orig_seq[i+1:]) ** 2).sum(1)
  348. if np.amax(dist_from_point) < dmin_tri * dmin_tri:
  349. continue
  350. iend = i + 1 + np.argmax(dist_from_point >= dmin_tri * dmin_tri)
  351. dist_from_point = ((orig_seq[i] - orig_seq[i-1::-1]) ** 2).sum(1)
  352. if np.amax(dist_from_point) < dmin_tri * dmin_tri:
  353. continue
  354. ibeg = i - 1 - np.argmax(dist_from_point >= dmin_tri * dmin_tri)
  355. length_base = ((orig_seq[iend] - orig_seq[ibeg]) ** 2).sum(0)
  356. relpos = ((orig_seq[i] - orig_seq[ibeg]) * (orig_seq[iend] - orig_seq[ibeg])).sum(0)
  357. if np.fabs(relpos) < 1000.0 * np.fabs(length_base):
  358. relpos /= length_base
  359. else:
  360. relpos = 0.5
  361. projection = orig_seq[ibeg] + relpos * (orig_seq[iend] - orig_seq[ibeg])
  362. dist_from_proj = np.sqrt(((projection - orig_seq[i]) ** 2).sum(0))
  363. if dist_from_proj > 0.001:
  364. modif_seq[i] = (orig_seq[i] - (self.wc_stretch / dist_from_proj)
  365. * (projection - orig_seq[i]))
  366. return
  367. def pushWall(self, orig_seq, modif_seq):
  368. """
  369. The algorithm tests for each segment if material was
  370. already deposited at one or the other side of this segment.
  371. If material was deposited at one side but not both,
  372. the segment is moved into the direction of the deposited material,
  373. to "push the wall"
  374. Already deposited material is stored as segments.
  375. vd1 is the array of the starting points of the segments
  376. vd2 is the array of the ending points of the segments
  377. For example, segment nr 8 starts at position self.vd1[8]
  378. and ends at position self.vd2[8]
  379. """
  380. dist_palp = self.line_width # Palpation distance to seek for a wall
  381. mrot = np.array([[0, -1], [1, 0]]) # Rotation matrix for a quarter turn
  382. for i in range(len(orig_seq)):
  383. ibeg = i # Index of the first point of the segment
  384. iend = i + 1 # Index of the last point of the segment
  385. if iend == len(orig_seq):
  386. iend = i - 1
  387. xperp = np.dot(mrot, orig_seq[iend] - orig_seq[ibeg])
  388. xperp = xperp / np.sqrt((xperp ** 2).sum(-1))
  389. testleft = orig_seq[ibeg] + xperp * dist_palp
  390. materialleft = False # Is there already extruded material at the left of the segment
  391. testright = orig_seq[ibeg] - xperp * dist_palp
  392. materialright = False # Is there already extruded material at the right of the segment
  393. if self.vd1.shape[0]:
  394. relpos = np.clip(((testleft - self.vd1) * (self.vd2 - self.vd1)).sum(1)
  395. / ((self.vd2 - self.vd1) * (self.vd2 - self.vd1)).sum(1), 0., 1.)
  396. nearpoints = self.vd1 + relpos[:, np.newaxis] * (self.vd2 - self.vd1)
  397. # nearpoints is the array of the nearest points of each segment
  398. # from the point testleft
  399. dist = ((testleft - nearpoints) * (testleft - nearpoints)).sum(1)
  400. # dist is the array of the squares of the distances between testleft
  401. # and each segment
  402. if np.amin(dist) <= dist_palp * dist_palp:
  403. materialleft = True
  404. # Now the same computation with the point testright at the other side of the
  405. # current segment
  406. relpos = np.clip(((testright - self.vd1) * (self.vd2 - self.vd1)).sum(1)
  407. / ((self.vd2 - self.vd1) * (self.vd2 - self.vd1)).sum(1), 0., 1.)
  408. nearpoints = self.vd1 + relpos[:, np.newaxis] * (self.vd2 - self.vd1)
  409. dist = ((testright - nearpoints) * (testright - nearpoints)).sum(1)
  410. if np.amin(dist) <= dist_palp * dist_palp:
  411. materialright = True
  412. if materialleft and not materialright:
  413. modif_seq[ibeg] = modif_seq[ibeg] + xperp * self.pw_stretch
  414. elif not materialleft and materialright:
  415. modif_seq[ibeg] = modif_seq[ibeg] - xperp * self.pw_stretch
  416. # Setup part of the stretch plugin
  417. class Stretch(Script):
  418. """
  419. Setup part of the stretch algorithm
  420. The only parameter is the stretch distance
  421. """
  422. def __init__(self):
  423. super().__init__()
  424. def getSettingDataString(self):
  425. return """{
  426. "name":"Post stretch script",
  427. "key": "Stretch",
  428. "metadata": {},
  429. "version": 2,
  430. "settings":
  431. {
  432. "wc_stretch":
  433. {
  434. "label": "Wide circle stretch distance",
  435. "description": "Distance by which the points are moved by the correction effect in corners. The higher this value, the higher the effect",
  436. "unit": "mm",
  437. "type": "float",
  438. "default_value": 0.1,
  439. "minimum_value": 0,
  440. "minimum_value_warning": 0,
  441. "maximum_value_warning": 0.2
  442. },
  443. "pw_stretch":
  444. {
  445. "label": "Push Wall stretch distance",
  446. "description": "Distance by which the points are moved by the correction effect when two lines are nearby. The higher this value, the higher the effect",
  447. "unit": "mm",
  448. "type": "float",
  449. "default_value": 0.1,
  450. "minimum_value": 0,
  451. "minimum_value_warning": 0,
  452. "maximum_value_warning": 0.2
  453. }
  454. }
  455. }"""
  456. def execute(self, data):
  457. """
  458. Entry point of the plugin.
  459. data is the list of original g-code instructions,
  460. the returned string is the list of modified g-code instructions
  461. """
  462. stretcher = Stretcher(
  463. ExtruderManager.getInstance().getActiveExtruderStack().getProperty("machine_nozzle_size", "value")
  464. , self.getSettingValueByKey("wc_stretch"), self.getSettingValueByKey("pw_stretch"))
  465. return stretcher.execute(data)