Stretch.py 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516
  1. # This PostProcessingPlugin script is released under the terms of the AGPLv3 or higher.
  2. """
  3. Copyright (c) 2017 Christophe Baribaud 2017
  4. Python implementation of https://github.com/electrocbd/post_stretch
  5. Correction of hole sizes, cylinder diameters and curves
  6. See the original description in https://github.com/electrocbd/post_stretch
  7. WARNING This script has never been tested with several extruders
  8. """
  9. from ..Script import Script
  10. import numpy as np
  11. from UM.Logger import Logger
  12. from UM.Application import Application
  13. import re
  14. from cura.Settings.ExtruderManager import ExtruderManager
  15. def _getValue(line, key, default=None):
  16. """
  17. Convenience function that finds the value in a line of g-code.
  18. When requesting key = x from line "G1 X100" the value 100 is returned.
  19. It is a copy of Stript's method, so it is no DontRepeatYourself, but
  20. I split the class into setup part (Stretch) and execution part (Strecher)
  21. and only the setup part inherits from Script
  22. """
  23. if not key in line or (";" in line and line.find(key) > line.find(";")):
  24. return default
  25. sub_part = line[line.find(key) + 1:]
  26. number = re.search(r"^-?[0-9]+\.?[0-9]*", sub_part)
  27. if number is None:
  28. return default
  29. return float(number.group(0))
  30. class GCodeStep():
  31. """
  32. Class to store the current value of each G_Code parameter
  33. for any G-Code step
  34. """
  35. def __init__(self, step, in_relative_movement: bool = False):
  36. self.step = step
  37. self.step_x = 0
  38. self.step_y = 0
  39. self.step_z = 0
  40. self.step_e = 0
  41. self.step_f = 0
  42. self.in_relative_movement = in_relative_movement
  43. self.comment = ""
  44. def readStep(self, line):
  45. """
  46. Reads gcode from line into self
  47. """
  48. if not self.in_relative_movement:
  49. self.step_x = _getValue(line, "X", self.step_x)
  50. self.step_y = _getValue(line, "Y", self.step_y)
  51. self.step_z = _getValue(line, "Z", self.step_z)
  52. self.step_e = _getValue(line, "E", self.step_e)
  53. self.step_f = _getValue(line, "F", self.step_f)
  54. else:
  55. delta_step_x = _getValue(line, "X", 0)
  56. delta_step_y = _getValue(line, "Y", 0)
  57. delta_step_z = _getValue(line, "Z", 0)
  58. delta_step_e = _getValue(line, "E", 0)
  59. self.step_x += delta_step_x
  60. self.step_y += delta_step_y
  61. self.step_z += delta_step_z
  62. self.step_e += delta_step_e
  63. self.step_f = _getValue(line, "F", self.step_f) # the feedrate is not relative
  64. def copyPosFrom(self, step):
  65. """
  66. Copies positions of step into self
  67. """
  68. self.step_x = step.step_x
  69. self.step_y = step.step_y
  70. self.step_z = step.step_z
  71. self.step_e = step.step_e
  72. self.step_f = step.step_f
  73. self.comment = step.comment
  74. def setInRelativeMovement(self, value: bool) -> None:
  75. self.in_relative_movement = value
  76. # Execution part of the stretch plugin
  77. class Stretcher():
  78. """
  79. Execution part of the stretch algorithm
  80. """
  81. def __init__(self, line_width, wc_stretch, pw_stretch):
  82. self.line_width = line_width
  83. self.wc_stretch = wc_stretch
  84. self.pw_stretch = pw_stretch
  85. if self.pw_stretch > line_width / 4:
  86. self.pw_stretch = line_width / 4 # Limit value of pushwall stretch distance
  87. self.outpos = GCodeStep(0)
  88. self.vd1 = np.empty((0, 2)) # Start points of segments
  89. # of already deposited material for current layer
  90. self.vd2 = np.empty((0, 2)) # End points of segments
  91. # of already deposited material for current layer
  92. self.layer_z = 0 # Z position of the extrusion moves of the current layer
  93. self.layergcode = ""
  94. self._in_relative_movement = False
  95. def execute(self, data):
  96. """
  97. Computes the new X and Y coordinates of all g-code steps
  98. """
  99. Logger.log("d", "Post stretch with line width " + str(self.line_width)
  100. + "mm wide circle stretch " + str(self.wc_stretch)+ "mm"
  101. + " and push wall stretch " + str(self.pw_stretch) + "mm")
  102. retdata = []
  103. layer_steps = []
  104. in_relative_movement = False
  105. current = GCodeStep(0, in_relative_movement)
  106. self.layer_z = 0.
  107. current_e = 0.
  108. for layer in data:
  109. lines = layer.rstrip("\n").split("\n")
  110. for line in lines:
  111. current.comment = ""
  112. if line.find(";") >= 0:
  113. current.comment = line[line.find(";"):]
  114. if _getValue(line, "G") == 0:
  115. current.readStep(line)
  116. onestep = GCodeStep(0, in_relative_movement)
  117. onestep.copyPosFrom(current)
  118. elif _getValue(line, "G") == 1:
  119. last_x = current.step_x
  120. last_y = current.step_y
  121. last_z = current.step_z
  122. last_e = current.step_e
  123. current.readStep(line)
  124. if (current.step_x == last_x and current.step_y == last_y and
  125. current.step_z == last_z and current.step_e != last_e
  126. ):
  127. # It's an extruder only move. Preserve it rather than process it as an
  128. # extruded move. Otherwise, the stretched output might contain slight
  129. # motion in X and Y in addition to E. This can cause problems with
  130. # firmwares that implement pressure advance.
  131. onestep = GCodeStep(-1, in_relative_movement)
  132. onestep.copyPosFrom(current)
  133. # Rather than copy the original line, write a new one with consistent
  134. # extruder coordinates
  135. onestep.comment = "G1 F{} E{}".format(onestep.step_f, onestep.step_e)
  136. else:
  137. onestep = GCodeStep(1, in_relative_movement)
  138. onestep.copyPosFrom(current)
  139. # end of relative movement
  140. elif _getValue(line, "G") == 90:
  141. in_relative_movement = False
  142. current.setInRelativeMovement(in_relative_movement)
  143. # start of relative movement
  144. elif _getValue(line, "G") == 91:
  145. in_relative_movement = True
  146. current.setInRelativeMovement(in_relative_movement)
  147. elif _getValue(line, "G") == 92:
  148. current.readStep(line)
  149. onestep = GCodeStep(-1, in_relative_movement)
  150. onestep.copyPosFrom(current)
  151. onestep.comment = line
  152. else:
  153. onestep = GCodeStep(-1, in_relative_movement)
  154. onestep.copyPosFrom(current)
  155. onestep.comment = line
  156. if line.find(";LAYER:") >= 0 and len(layer_steps):
  157. # Previous plugin "forgot" to separate two layers...
  158. Logger.log("d", "Layer Z " + "{:.3f}".format(self.layer_z)
  159. + " " + str(len(layer_steps)) + " steps")
  160. retdata.append(self.processLayer(layer_steps))
  161. layer_steps = []
  162. layer_steps.append(onestep)
  163. # self.layer_z is the z position of the last extrusion move (not travel move)
  164. if current.step_z != self.layer_z and current.step_e != current_e:
  165. self.layer_z = current.step_z
  166. current_e = current.step_e
  167. if len(layer_steps): # Force a new item in the array
  168. Logger.log("d", "Layer Z " + "{:.3f}".format(self.layer_z)
  169. + " " + str(len(layer_steps)) + " steps")
  170. retdata.append(self.processLayer(layer_steps))
  171. layer_steps = []
  172. retdata.append(";Wide circle stretch distance " + str(self.wc_stretch) + "\n")
  173. retdata.append(";Push wall stretch distance " + str(self.pw_stretch) + "\n")
  174. return retdata
  175. def extrusionBreak(self, layer_steps, i_pos):
  176. """
  177. Returns true if the command layer_steps[i_pos] breaks the extruded filament
  178. i.e. it is a travel move
  179. """
  180. if i_pos == 0:
  181. return True # Begining a layer always breaks filament (for simplicity)
  182. step = layer_steps[i_pos]
  183. prev_step = layer_steps[i_pos - 1]
  184. if step.step_e != prev_step.step_e:
  185. return False
  186. delta_x = step.step_x - prev_step.step_x
  187. delta_y = step.step_y - prev_step.step_y
  188. if delta_x * delta_x + delta_y * delta_y < self.line_width * self.line_width / 4:
  189. # This is a very short movement, less than 0.5 * line_width
  190. # It does not break filament, we should stay in the same extrusion sequence
  191. return False
  192. return True # New sequence
  193. def processLayer(self, layer_steps):
  194. """
  195. Computes the new coordinates of g-code steps
  196. for one layer (all the steps at the same Z coordinate)
  197. """
  198. self.outpos.step_x = -1000 # Force output of X and Y coordinates
  199. self.outpos.step_y = -1000 # at each start of layer
  200. self.layergcode = ""
  201. self.vd1 = np.empty((0, 2))
  202. self.vd2 = np.empty((0, 2))
  203. orig_seq = np.empty((0, 2))
  204. modif_seq = np.empty((0, 2))
  205. iflush = 0
  206. for i, step in enumerate(layer_steps):
  207. if step.step == 0 or step.step == 1:
  208. if self.extrusionBreak(layer_steps, i):
  209. # No extrusion since the previous step, so it is a travel move
  210. # Let process steps accumulated into orig_seq,
  211. # which are a sequence of continuous extrusion
  212. modif_seq = np.copy(orig_seq)
  213. if len(orig_seq) >= 2:
  214. self.workOnSequence(orig_seq, modif_seq)
  215. self.generate(layer_steps, iflush, i, modif_seq)
  216. iflush = i
  217. orig_seq = np.empty((0, 2))
  218. orig_seq = np.concatenate([orig_seq, np.array([[step.step_x, step.step_y]])])
  219. if len(orig_seq):
  220. modif_seq = np.copy(orig_seq)
  221. if len(orig_seq) >= 2:
  222. self.workOnSequence(orig_seq, modif_seq)
  223. self.generate(layer_steps, iflush, len(layer_steps), modif_seq)
  224. return self.layergcode
  225. def stepToGcode(self, onestep):
  226. """
  227. Converts a step into G-Code
  228. For each of the X, Y, Z, E and F parameter,
  229. the parameter is written only if its value changed since the
  230. previous g-code step.
  231. """
  232. sout = ""
  233. if onestep.step_f != self.outpos.step_f:
  234. self.outpos.step_f = onestep.step_f
  235. sout += " F{:.0f}".format(self.outpos.step_f).rstrip(".")
  236. if onestep.step_x != self.outpos.step_x or onestep.step_y != self.outpos.step_y:
  237. assert onestep.step_x >= -1000 and onestep.step_x < 1000 # If this assertion fails,
  238. # something went really wrong !
  239. self.outpos.step_x = onestep.step_x
  240. sout += " X{:.3f}".format(self.outpos.step_x).rstrip("0").rstrip(".")
  241. assert onestep.step_y >= -1000 and onestep.step_y < 1000 # If this assertion fails,
  242. # something went really wrong !
  243. self.outpos.step_y = onestep.step_y
  244. sout += " Y{:.3f}".format(self.outpos.step_y).rstrip("0").rstrip(".")
  245. if onestep.step_z != self.outpos.step_z or onestep.step_z != self.layer_z:
  246. self.outpos.step_z = onestep.step_z
  247. sout += " Z{:.3f}".format(self.outpos.step_z).rstrip("0").rstrip(".")
  248. if onestep.step_e != self.outpos.step_e:
  249. self.outpos.step_e = onestep.step_e
  250. sout += " E{:.5f}".format(self.outpos.step_e).rstrip("0").rstrip(".")
  251. return sout
  252. def generate(self, layer_steps, ibeg, iend, orig_seq):
  253. """
  254. Appends g-code lines to the plugin's returned string
  255. starting from step ibeg included and until step iend excluded
  256. """
  257. ipos = 0
  258. for i in range(ibeg, iend):
  259. if layer_steps[i].step == 0:
  260. layer_steps[i].step_x = orig_seq[ipos][0]
  261. layer_steps[i].step_y = orig_seq[ipos][1]
  262. sout = "G0" + self.stepToGcode(layer_steps[i])
  263. self.layergcode = self.layergcode + sout + "\n"
  264. ipos = ipos + 1
  265. elif layer_steps[i].step == 1:
  266. layer_steps[i].step_x = orig_seq[ipos][0]
  267. layer_steps[i].step_y = orig_seq[ipos][1]
  268. sout = "G1" + self.stepToGcode(layer_steps[i])
  269. self.layergcode = self.layergcode + sout + "\n"
  270. ipos = ipos + 1
  271. else:
  272. self.layergcode = self.layergcode + layer_steps[i].comment + "\n"
  273. def workOnSequence(self, orig_seq, modif_seq):
  274. """
  275. Computes new coordinates for a sequence
  276. A sequence is a list of consecutive g-code steps
  277. of continuous material extrusion
  278. """
  279. d_contact = self.line_width / 2.0
  280. if (len(orig_seq) > 2 and
  281. ((orig_seq[len(orig_seq) - 1] - orig_seq[0]) ** 2).sum(0) < d_contact * d_contact):
  282. # Starting and ending point of the sequence are nearby
  283. # It is a closed loop
  284. #self.layergcode = self.layergcode + ";wideCircle\n"
  285. self.wideCircle(orig_seq, modif_seq)
  286. else:
  287. #self.layergcode = self.layergcode + ";wideTurn\n"
  288. self.wideTurn(orig_seq, modif_seq) # It is an open curve
  289. if len(orig_seq) > 6: # Don't try push wall on a short sequence
  290. self.pushWall(orig_seq, modif_seq)
  291. if len(orig_seq):
  292. self.vd1 = np.concatenate([self.vd1, np.array(orig_seq[:-1])])
  293. self.vd2 = np.concatenate([self.vd2, np.array(orig_seq[1:])])
  294. def wideCircle(self, orig_seq, modif_seq):
  295. """
  296. Similar to wideTurn
  297. The first and last point of the sequence are the same,
  298. so it is possible to extend the end of the sequence
  299. with its beginning when seeking for triangles
  300. It is necessary to find the direction of the curve, knowing three points (a triangle)
  301. If the triangle is not wide enough, there is a huge risk of finding
  302. an incorrect orientation, due to insufficient accuracy.
  303. So, when the consecutive points are too close, the method
  304. use following and preceding points to form a wider triangle around
  305. the current point
  306. dmin_tri is the minimum distance between two consecutive points
  307. of an acceptable triangle
  308. """
  309. dmin_tri = 0.5
  310. iextra_base = np.floor_divide(len(orig_seq), 3) # Nb of extra points
  311. ibeg = 0 # Index of first point of the triangle
  312. iend = 0 # Index of the third point of the triangle
  313. for i, step in enumerate(orig_seq):
  314. if i == 0 or i == len(orig_seq) - 1:
  315. # First and last point of the sequence are the same,
  316. # so it is necessary to skip one of these two points
  317. # when creating a triangle containing the first or the last point
  318. iextra = iextra_base + 1
  319. else:
  320. iextra = iextra_base
  321. # i is the index of the second point of the triangle
  322. # pos_after is the array of positions of the original sequence
  323. # after the current point
  324. pos_after = np.resize(np.roll(orig_seq, -i-1, 0), (iextra, 2))
  325. # Vector of distances between the current point and each following point
  326. dist_from_point = ((step - pos_after) ** 2).sum(1)
  327. if np.amax(dist_from_point) < dmin_tri * dmin_tri:
  328. continue
  329. iend = np.argmax(dist_from_point >= dmin_tri * dmin_tri)
  330. # pos_before is the array of positions of the original sequence
  331. # before the current point
  332. pos_before = np.resize(np.roll(orig_seq, -i, 0)[::-1], (iextra, 2))
  333. # This time, vector of distances between the current point and each preceding point
  334. dist_from_point = ((step - pos_before) ** 2).sum(1)
  335. if np.amax(dist_from_point) < dmin_tri * dmin_tri:
  336. continue
  337. ibeg = np.argmax(dist_from_point >= dmin_tri * dmin_tri)
  338. # See https://github.com/electrocbd/post_stretch for explanations
  339. # relpos is the relative position of the projection of the second point
  340. # of the triangle on the segment from the first to the third point
  341. # 0 means the position of the first point, 1 means the position of the third,
  342. # intermediate values are positions between
  343. length_base = ((pos_after[iend] - pos_before[ibeg]) ** 2).sum(0)
  344. relpos = ((step - pos_before[ibeg])
  345. * (pos_after[iend] - pos_before[ibeg])).sum(0)
  346. if np.fabs(relpos) < 1000.0 * np.fabs(length_base):
  347. relpos /= length_base
  348. else:
  349. relpos = 0.5 # To avoid division by zero or precision loss
  350. projection = (pos_before[ibeg] + relpos * (pos_after[iend] - pos_before[ibeg]))
  351. dist_from_proj = np.sqrt(((projection - step) ** 2).sum(0))
  352. if dist_from_proj > 0.0003: # Move central point only if points are not aligned
  353. modif_seq[i] = (step - (self.wc_stretch / dist_from_proj)
  354. * (projection - step))
  355. return
  356. def wideTurn(self, orig_seq, modif_seq):
  357. '''
  358. We have to select three points in order to form a triangle
  359. These three points should be far enough from each other to have
  360. a reliable estimation of the orientation of the current turn
  361. '''
  362. dmin_tri = self.line_width / 2.0
  363. ibeg = 0
  364. iend = 2
  365. for i in range(1, len(orig_seq) - 1):
  366. dist_from_point = ((orig_seq[i] - orig_seq[i+1:]) ** 2).sum(1)
  367. if np.amax(dist_from_point) < dmin_tri * dmin_tri:
  368. continue
  369. iend = i + 1 + np.argmax(dist_from_point >= dmin_tri * dmin_tri)
  370. dist_from_point = ((orig_seq[i] - orig_seq[i-1::-1]) ** 2).sum(1)
  371. if np.amax(dist_from_point) < dmin_tri * dmin_tri:
  372. continue
  373. ibeg = i - 1 - np.argmax(dist_from_point >= dmin_tri * dmin_tri)
  374. length_base = ((orig_seq[iend] - orig_seq[ibeg]) ** 2).sum(0)
  375. relpos = ((orig_seq[i] - orig_seq[ibeg]) * (orig_seq[iend] - orig_seq[ibeg])).sum(0)
  376. if np.fabs(relpos) < 1000.0 * np.fabs(length_base):
  377. relpos /= length_base
  378. else:
  379. relpos = 0.5
  380. projection = orig_seq[ibeg] + relpos * (orig_seq[iend] - orig_seq[ibeg])
  381. dist_from_proj = np.sqrt(((projection - orig_seq[i]) ** 2).sum(0))
  382. if dist_from_proj > 0.001:
  383. modif_seq[i] = (orig_seq[i] - (self.wc_stretch / dist_from_proj)
  384. * (projection - orig_seq[i]))
  385. return
  386. def pushWall(self, orig_seq, modif_seq):
  387. """
  388. The algorithm tests for each segment if material was
  389. already deposited at one or the other side of this segment.
  390. If material was deposited at one side but not both,
  391. the segment is moved into the direction of the deposited material,
  392. to "push the wall"
  393. Already deposited material is stored as segments.
  394. vd1 is the array of the starting points of the segments
  395. vd2 is the array of the ending points of the segments
  396. For example, segment nr 8 starts at position self.vd1[8]
  397. and ends at position self.vd2[8]
  398. """
  399. dist_palp = self.line_width # Palpation distance to seek for a wall
  400. mrot = np.array([[0, -1], [1, 0]]) # Rotation matrix for a quarter turn
  401. for i in range(len(orig_seq)):
  402. ibeg = i # Index of the first point of the segment
  403. iend = i + 1 # Index of the last point of the segment
  404. if iend == len(orig_seq):
  405. iend = i - 1
  406. xperp = np.dot(mrot, orig_seq[iend] - orig_seq[ibeg])
  407. xperp = xperp / np.sqrt((xperp ** 2).sum(-1))
  408. testleft = orig_seq[ibeg] + xperp * dist_palp
  409. materialleft = False # Is there already extruded material at the left of the segment
  410. testright = orig_seq[ibeg] - xperp * dist_palp
  411. materialright = False # Is there already extruded material at the right of the segment
  412. if self.vd1.shape[0]:
  413. relpos = np.clip(((testleft - self.vd1) * (self.vd2 - self.vd1)).sum(1)
  414. / ((self.vd2 - self.vd1) * (self.vd2 - self.vd1)).sum(1), 0., 1.)
  415. nearpoints = self.vd1 + relpos[:, np.newaxis] * (self.vd2 - self.vd1)
  416. # nearpoints is the array of the nearest points of each segment
  417. # from the point testleft
  418. dist = ((testleft - nearpoints) * (testleft - nearpoints)).sum(1)
  419. # dist is the array of the squares of the distances between testleft
  420. # and each segment
  421. if np.amin(dist) <= dist_palp * dist_palp:
  422. materialleft = True
  423. # Now the same computation with the point testright at the other side of the
  424. # current segment
  425. relpos = np.clip(((testright - self.vd1) * (self.vd2 - self.vd1)).sum(1)
  426. / ((self.vd2 - self.vd1) * (self.vd2 - self.vd1)).sum(1), 0., 1.)
  427. nearpoints = self.vd1 + relpos[:, np.newaxis] * (self.vd2 - self.vd1)
  428. dist = ((testright - nearpoints) * (testright - nearpoints)).sum(1)
  429. if np.amin(dist) <= dist_palp * dist_palp:
  430. materialright = True
  431. if materialleft and not materialright:
  432. modif_seq[ibeg] = modif_seq[ibeg] + xperp * self.pw_stretch
  433. elif not materialleft and materialright:
  434. modif_seq[ibeg] = modif_seq[ibeg] - xperp * self.pw_stretch
  435. # Setup part of the stretch plugin
  436. class Stretch(Script):
  437. """
  438. Setup part of the stretch algorithm
  439. The only parameter is the stretch distance
  440. """
  441. def __init__(self):
  442. super().__init__()
  443. def getSettingDataString(self):
  444. return """{
  445. "name":"Post stretch script",
  446. "key": "Stretch",
  447. "metadata": {},
  448. "version": 2,
  449. "settings":
  450. {
  451. "wc_stretch":
  452. {
  453. "label": "Wide circle stretch distance",
  454. "description": "Distance by which the points are moved by the correction effect in corners. The higher this value, the higher the effect",
  455. "unit": "mm",
  456. "type": "float",
  457. "default_value": 0.1,
  458. "minimum_value": 0,
  459. "minimum_value_warning": 0,
  460. "maximum_value_warning": 0.2
  461. },
  462. "pw_stretch":
  463. {
  464. "label": "Push Wall stretch distance",
  465. "description": "Distance by which the points are moved by the correction effect when two lines are nearby. The higher this value, the higher the effect",
  466. "unit": "mm",
  467. "type": "float",
  468. "default_value": 0.1,
  469. "minimum_value": 0,
  470. "minimum_value_warning": 0,
  471. "maximum_value_warning": 0.2
  472. }
  473. }
  474. }"""
  475. def execute(self, data):
  476. """
  477. Entry point of the plugin.
  478. data is the list of original g-code instructions,
  479. the returned string is the list of modified g-code instructions
  480. """
  481. stretcher = Stretcher(
  482. ExtruderManager.getInstance().getActiveExtruderStack().getProperty("machine_nozzle_size", "value")
  483. , self.getSettingValueByKey("wc_stretch"), self.getSettingValueByKey("pw_stretch"))
  484. return stretcher.execute(data)