123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253 |
- # Copyright (c) 2015 Ultimaker B.V.
- # Cura is released under the terms of the AGPLv3 or higher.
- from UM.Mesh.MeshData import MeshData
- from UM.Mesh.MeshBuilder import MeshBuilder
- from UM.Math.Color import Color
- from UM.Math.Vector import Vector
- import numpy
- class LayerData(MeshData):
- def __init__(self):
- super().__init__()
- self._layers = {}
- self._element_counts = {}
- def addLayer(self, layer):
- if layer not in self._layers:
- self._layers[layer] = Layer(layer)
- def addPolygon(self, layer, polygon_type, data, line_width):
- if layer not in self._layers:
- self.addLayer(layer)
- p = Polygon(self, polygon_type, data, line_width)
- self._layers[layer].polygons.append(p)
- def getLayer(self, layer):
- if layer in self._layers:
- return self._layers[layer]
- def getLayers(self):
- return self._layers
- def getElementCounts(self):
- return self._element_counts
- def setLayerHeight(self, layer, height):
- if layer not in self._layers:
- self.addLayer(layer)
- self._layers[layer].setHeight(height)
- def setLayerThickness(self, layer, thickness):
- if layer not in self._layers:
- self.addLayer(layer)
- self._layers[layer].setThickness(thickness)
- def build(self):
- vertex_count = 0
- for layer, data in self._layers.items():
- vertex_count += data.vertexCount()
- vertices = numpy.empty((vertex_count, 3), numpy.float32)
- colors = numpy.empty((vertex_count, 4), numpy.float32)
- indices = numpy.empty((vertex_count, 2), numpy.int32)
- offset = 0
- for layer, data in self._layers.items():
- offset = data.build(offset, vertices, colors, indices)
- self._element_counts[layer] = data.elementCount
- self.clear()
- self.addVertices(vertices)
- self.addColors(colors)
- self.addIndices(indices.flatten())
- class Layer():
- def __init__(self, layer_id):
- self._id = layer_id
- self._height = 0.0
- self._thickness = 0.0
- self._polygons = []
- self._element_count = 0
- @property
- def height(self):
- return self._height
- @property
- def thickness(self):
- return self._thickness
- @property
- def polygons(self):
- return self._polygons
- @property
- def elementCount(self):
- return self._element_count
- def setHeight(self, height):
- self._height = height
- def setThickness(self, thickness):
- self._thickness = thickness
- def vertexCount(self):
- result = 0
- for polygon in self._polygons:
- result += polygon.vertexCount()
- return result
- def build(self, offset, vertices, colors, indices):
- result = offset
- for polygon in self._polygons:
- if polygon.type == Polygon.InfillType or polygon.type == Polygon.MoveCombingType or polygon.type == Polygon.MoveRetractionType:
- continue
- polygon.build(result, vertices, colors, indices)
- result += polygon.vertexCount()
- self._element_count += polygon.elementCount
- return result
- def createMesh(self):
- return self.createMeshOrJumps(True)
-
- def createJumps(self):
- return self.createMeshOrJumps(False)
-
- def createMeshOrJumps(self, make_mesh):
- builder = MeshBuilder()
- for polygon in self._polygons:
- if make_mesh and (polygon.type == Polygon.MoveCombingType or polygon.type == Polygon.MoveRetractionType):
- continue
- if not make_mesh and not (polygon.type == Polygon.MoveCombingType or polygon.type == Polygon.MoveRetractionType):
- continue
- poly_color = polygon.getColor()
- points = numpy.copy(polygon.data)
- if polygon.type == Polygon.InfillType or polygon.type == Polygon.SkinType or polygon.type == Polygon.SupportInfillType:
- points[:,1] -= 0.01
- if polygon.type == Polygon.MoveCombingType or polygon.type == Polygon.MoveRetractionType:
- points[:,1] += 0.01
- normals = polygon.getNormals()
- # Scale all by the line width of the polygon so we can easily offset.
- normals *= (polygon.lineWidth / 2)
- #TODO: Use numpy magic to perform the vertex creation to speed up things.
- for i in range(len(points)):
- start = points[i - 1]
- end = points[i]
- normal = normals[i - 1]
- point1 = Vector(data = start - normal)
- point2 = Vector(data = start + normal)
- point3 = Vector(data = end + normal)
- point4 = Vector(data = end - normal)
- builder.addQuad(point1, point2, point3, point4, color = poly_color)
- return builder.getData()
- class Polygon():
- NoneType = 0
- Inset0Type = 1
- InsetXType = 2
- SkinType = 3
- SupportType = 4
- SkirtType = 5
- InfillType = 6
- SupportInfillType = 7
- MoveCombingType = 8
- MoveRetractionType = 9
- def __init__(self, mesh, polygon_type, data, line_width):
- self._mesh = mesh
- self._type = polygon_type
- self._data = data
- self._line_width = line_width / 1000
- self._color = self.__color_map[polygon_type]
- def build(self, offset, vertices, colors, indices):
- self._begin = offset
- self._end = self._begin + len(self._data) - 1
- vertices[self._begin:self._end + 1, :] = self._data[:, :]
- colors[self._begin:self._end + 1, :] = numpy.array([self._color.r * 0.5, self._color.g * 0.5, self._color.b * 0.5, self._color.a], numpy.float32)
- for i in range(self._begin, self._end):
- indices[i, 0] = i
- indices[i, 1] = i + 1
- indices[self._end, 0] = self._end
- indices[self._end, 1] = self._begin
- def getColor(self):
- return self._color
- def vertexCount(self):
- return len(self._data)
- @property
- def type(self):
- return self._type
- @property
- def data(self):
- return self._data
- @property
- def elementCount(self):
- return ((self._end - self._begin) + 1) * 2 #The range of vertices multiplied by 2 since each vertex is used twice
- @property
- def lineWidth(self):
- return self._line_width
- # Calculate normals for the entire polygon using numpy.
- def getNormals(self):
- normals = numpy.copy(self._data)
- normals[:,1] = 0.0 # We are only interested in 2D normals
- # Calculate the edges between points.
- # The call to numpy.roll shifts the entire array by one so that
- # we end up subtracting each next point from the current, wrapping
- # around. This gives us the edges from the next point to the current
- # point.
- normals[:] = normals[:] - numpy.roll(normals, -1, axis = 0)
- # Calculate the length of each edge using standard Pythagoras
- lengths = numpy.sqrt(normals[:,0] ** 2 + normals[:,2] ** 2)
- # The normal of a 2D vector is equal to its x and y coordinates swapped
- # and then x inverted. This code does that.
- normals[:,[0, 2]] = normals[:,[2, 0]]
- normals[:,0] *= -1
- # Normalize the normals.
- normals[:,0] /= lengths
- normals[:,2] /= lengths
- return normals
- __color_map = {
- NoneType: Color(1.0, 1.0, 1.0, 1.0),
- Inset0Type: Color(1.0, 0.0, 0.0, 1.0),
- InsetXType: Color(0.0, 1.0, 0.0, 1.0),
- SkinType: Color(1.0, 1.0, 0.0, 1.0),
- SupportType: Color(0.0, 1.0, 1.0, 1.0),
- SkirtType: Color(0.0, 1.0, 1.0, 1.0),
- InfillType: Color(1.0, 0.74, 0.0, 1.0),
- SupportInfillType: Color(0.0, 1.0, 1.0, 1.0),
- MoveCombingType: Color(0.0, 0.0, 1.0, 1.0),
- MoveRetractionType: Color(0.5, 0.5, 1.0, 1.0),
- }
|