123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151 |
- # Copyright (c) 2019 Ultimaker B.V.
- # Cura is released under the terms of the LGPLv3 or higher.
- from typing import List
- from UM.Scene.Iterator import Iterator
- from UM.Scene.SceneNode import SceneNode
- from functools import cmp_to_key
- class OneAtATimeIterator(Iterator.Iterator):
- """Iterator that returns a list of nodes in the order that they need to be printed
- If there is no solution an empty list is returned.
- Take note that the list of nodes can have children (that may or may not contain mesh data)
- """
- def __init__(self, scene_node) -> None:
- super().__init__(scene_node) # Call super to make multiple inheritance work.
- self._hit_map = [[]] # type: List[List[bool]] # For each node, which other nodes this hits. A grid of booleans on which nodes hit which.
- self._original_node_list = [] # type: List[SceneNode] # The nodes that need to be checked for collisions.
- def _fillStack(self) -> None:
- """Fills the ``_node_stack`` with a list of scene nodes that need to be printed in order. """
- node_list = []
- for node in self._scene_node.getChildren():
- if not issubclass(type(node), SceneNode):
- continue
- # Node can't be printed, so don't bother sending it.
- if getattr(node, "_outside_buildarea", False):
- continue
- if node.callDecoration("getConvexHull"):
- node_list.append(node)
- if len(node_list) < 2:
- self._node_stack = node_list[:]
- return
- # Copy the list
- self._original_node_list = node_list[:]
- # Initialise the hit map (pre-compute all hits between all objects)
- self._hit_map = [[self._checkHit(i, j) for i in node_list] for j in node_list]
- # Check if we have to files that block each other. If this is the case, there is no solution!
- for a in range(0, len(node_list)):
- for b in range(0, len(node_list)):
- if a != b and self._hit_map[a][b] and self._hit_map[b][a]:
- return
- # Sort the original list so that items that block the most other objects are at the beginning.
- # This does not decrease the worst case running time, but should improve it in most cases.
- sorted(node_list, key = cmp_to_key(self._calculateScore))
- todo_node_list = [_ObjectOrder([], node_list)]
- while len(todo_node_list) > 0:
- current = todo_node_list.pop()
- for node in current.todo:
- # Check if the object can be placed with what we have and still allows for a solution in the future
- if not self._checkHitMultiple(node, current.order) and not self._checkBlockMultiple(node, current.todo):
- # We found a possible result. Create new todo & order list.
- new_todo_list = current.todo[:]
- new_todo_list.remove(node)
- new_order = current.order[:] + [node]
- if len(new_todo_list) == 0:
- # We have no more nodes to check, so quit looking.
- self._node_stack = new_order
- return
- todo_node_list.append(_ObjectOrder(new_order, new_todo_list))
- self._node_stack = [] #No result found!
- # Check if first object can be printed before the provided list (using the hit map)
- def _checkHitMultiple(self, node: SceneNode, other_nodes: List[SceneNode]) -> bool:
- node_index = self._original_node_list.index(node)
- for other_node in other_nodes:
- other_node_index = self._original_node_list.index(other_node)
- if self._hit_map[node_index][other_node_index]:
- return True
- return False
- def _checkBlockMultiple(self, node: SceneNode, other_nodes: List[SceneNode]) -> bool:
- """Check for a node whether it hits any of the other nodes.
- :param node: The node to check whether it collides with the other nodes.
- :param other_nodes: The nodes to check for collisions.
- :return: returns collision between nodes
- """
- node_index = self._original_node_list.index(node)
- for other_node in other_nodes:
- other_node_index = self._original_node_list.index(other_node)
- if self._hit_map[other_node_index][node_index] and node_index != other_node_index:
- return True
- return False
- def _calculateScore(self, a: SceneNode, b: SceneNode) -> int:
- """Calculate score simply sums the number of other objects it 'blocks'
- :param a: node
- :param b: node
- :return: sum of the number of other objects
- """
- score_a = sum(self._hit_map[self._original_node_list.index(a)])
- score_b = sum(self._hit_map[self._original_node_list.index(b)])
- return score_a - score_b
- def _checkHit(self, a: SceneNode, b: SceneNode) -> bool:
- """Checks if a can be printed before b
- :param a: node
- :param b: node
- :return: true if a can be printed before b
- """
- if a == b:
- return False
- a_hit_hull = a.callDecoration("getConvexHullBoundary")
- b_hit_hull = b.callDecoration("getConvexHullHeadFull")
- overlap = a_hit_hull.intersectsPolygon(b_hit_hull)
- if overlap:
- return True
- # Adhesion areas must never overlap, regardless of printing order
- # This would cause over-extrusion
- a_hit_hull = a.callDecoration("getAdhesionArea")
- b_hit_hull = b.callDecoration("getAdhesionArea")
- overlap = a_hit_hull.intersectsPolygon(b_hit_hull)
- if overlap:
- return True
- else:
- return False
- class _ObjectOrder:
- """Internal object used to keep track of a possible order in which to print objects."""
- def __init__(self, order: List[SceneNode], todo: List[SceneNode]) -> None:
- """Creates the _ObjectOrder instance.
- :param order: List of indices in which to print objects, ordered by printing order.
- :param todo: List of indices which are not yet inserted into the order list.
- """
- self.order = order
- self.todo = todo
|