# Copyright (c) 2016 Ultimaker B.V. # Cura is released under the terms of the LGPLv3 or higher. from PyQt5.QtCore import QTimer from UM.Application import Application from UM.Math.Polygon import Polygon from UM.Scene.SceneNodeDecorator import SceneNodeDecorator from UM.Settings.ContainerRegistry import ContainerRegistry from cura.Settings.ExtruderManager import ExtruderManager from cura.Scene import ConvexHullNode import numpy ## The convex hull decorator is a scene node decorator that adds the convex hull functionality to a scene node. # If a scene node has a convex hull decorator, it will have a shadow in which other objects can not be printed. class ConvexHullDecorator(SceneNodeDecorator): def __init__(self): super().__init__() self._convex_hull_node = None self._init2DConvexHullCache() self._global_stack = None # Make sure the timer is created on the main thread self._recompute_convex_hull_timer = None Application.getInstance().callLater(self.createRecomputeConvexHullTimer) self._raft_thickness = 0.0 # For raft thickness, DRY self._build_volume = Application.getInstance().getBuildVolume() self._build_volume.raftThicknessChanged.connect(self._onChanged) Application.getInstance().globalContainerStackChanged.connect(self._onGlobalStackChanged) Application.getInstance().getController().toolOperationStarted.connect(self._onChanged) Application.getInstance().getController().toolOperationStopped.connect(self._onChanged) self._onGlobalStackChanged() def createRecomputeConvexHullTimer(self): self._recompute_convex_hull_timer = QTimer() self._recompute_convex_hull_timer.setInterval(200) self._recompute_convex_hull_timer.setSingleShot(True) self._recompute_convex_hull_timer.timeout.connect(self.recomputeConvexHull) def setNode(self, node): previous_node = self._node # Disconnect from previous node signals if previous_node is not None and node is not previous_node: previous_node.transformationChanged.disconnect(self._onChanged) previous_node.parentChanged.disconnect(self._onChanged) super().setNode(node) self._node.transformationChanged.connect(self._onChanged) self._node.parentChanged.connect(self._onChanged) self._onChanged() ## Force that a new (empty) object is created upon copy. def __deepcopy__(self, memo): return ConvexHullDecorator() ## Get the unmodified 2D projected convex hull of the node def getConvexHull(self): if self._node is None: return None hull = self._compute2DConvexHull() if self._global_stack and self._node: # Parent can be None if node is just loaded. if self._global_stack.getProperty("print_sequence", "value") == "one_at_a_time" and (self._node.getParent() is None or not self._node.getParent().callDecoration("isGroup")): hull = hull.getMinkowskiHull(Polygon(numpy.array(self._global_stack.getProperty("machine_head_polygon", "value"), numpy.float32))) hull = self._add2DAdhesionMargin(hull) return hull ## Get the convex hull of the node with the full head size def getConvexHullHeadFull(self): if self._node is None: return None return self._compute2DConvexHeadFull() ## Get convex hull of the object + head size # In case of printing all at once this is the same as the convex hull. # For one at the time this is area with intersection of mirrored head def getConvexHullHead(self): if self._node is None: return None if self._global_stack: if self._global_stack.getProperty("print_sequence", "value") == "one_at_a_time" and (self._node.getParent() is None or not self._node.getParent().callDecoration("isGroup")): head_with_fans = self._compute2DConvexHeadMin() head_with_fans_with_adhesion_margin = self._add2DAdhesionMargin(head_with_fans) return head_with_fans_with_adhesion_margin return None ## Get convex hull of the node # In case of printing all at once this is the same as the convex hull. # For one at the time this is the area without the head. def getConvexHullBoundary(self): if self._node is None: return None if self._global_stack: if self._global_stack.getProperty("print_sequence", "value") == "one_at_a_time" and (self._node.getParent() is None or not self._node.getParent().callDecoration("isGroup")): # Printing one at a time and it's not an object in a group return self._compute2DConvexHull() return None def recomputeConvexHullDelayed(self): if self._recompute_convex_hull_timer is not None: self._recompute_convex_hull_timer.start() else: self.recomputeConvexHull() def recomputeConvexHull(self): controller = Application.getInstance().getController() root = controller.getScene().getRoot() if self._node is None or controller.isToolOperationActive() or not self.__isDescendant(root, self._node): if self._convex_hull_node: self._convex_hull_node.setParent(None) self._convex_hull_node = None return convex_hull = self.getConvexHull() if self._convex_hull_node: self._convex_hull_node.setParent(None) hull_node = ConvexHullNode.ConvexHullNode(self._node, convex_hull, self._raft_thickness, root) self._convex_hull_node = hull_node def _onSettingValueChanged(self, key, property_name): if property_name != "value": #Not the value that was changed. return if key in self._affected_settings: self._onChanged() if key in self._influencing_settings: self._init2DConvexHullCache() #Invalidate the cache. self._onChanged() def _init2DConvexHullCache(self): # Cache for the group code path in _compute2DConvexHull() self._2d_convex_hull_group_child_polygon = None self._2d_convex_hull_group_result = None # Cache for the mesh code path in _compute2DConvexHull() self._2d_convex_hull_mesh = None self._2d_convex_hull_mesh_world_transform = None self._2d_convex_hull_mesh_result = None def _compute2DConvexHull(self): if self._node.callDecoration("isGroup"): points = numpy.zeros((0, 2), dtype=numpy.int32) for child in self._node.getChildren(): child_hull = child.callDecoration("_compute2DConvexHull") if child_hull: points = numpy.append(points, child_hull.getPoints(), axis = 0) if points.size < 3: return None child_polygon = Polygon(points) # Check the cache if child_polygon == self._2d_convex_hull_group_child_polygon: return self._2d_convex_hull_group_result convex_hull = child_polygon.getConvexHull() #First calculate the normal convex hull around the points. offset_hull = self._offsetHull(convex_hull) #Then apply the offset from the settings. # Store the result in the cache self._2d_convex_hull_group_child_polygon = child_polygon self._2d_convex_hull_group_result = offset_hull return offset_hull else: offset_hull = None mesh = None world_transform = None if self._node.getMeshData(): mesh = self._node.getMeshData() world_transform = self._node.getWorldTransformation() # Check the cache if mesh is self._2d_convex_hull_mesh and world_transform == self._2d_convex_hull_mesh_world_transform: return self._2d_convex_hull_mesh_result vertex_data = mesh.getConvexHullTransformedVertices(world_transform) # Don't use data below 0. # TODO; We need a better check for this as this gives poor results for meshes with long edges. # Do not throw away vertices: the convex hull may be too small and objects can collide. # vertex_data = vertex_data[vertex_data[:,1] >= -0.01] if len(vertex_data) >= 4: # Round the vertex data to 1/10th of a mm, then remove all duplicate vertices # This is done to greatly speed up further convex hull calculations as the convex hull # becomes much less complex when dealing with highly detailed models. vertex_data = numpy.round(vertex_data, 1) vertex_data = vertex_data[:, [0, 2]] # Drop the Y components to project to 2D. # Grab the set of unique points. # # This basically finds the unique rows in the array by treating them as opaque groups of bytes # which are as long as the 2 float64s in each row, and giving this view to numpy.unique() to munch. # See http://stackoverflow.com/questions/16970982/find-unique-rows-in-numpy-array vertex_byte_view = numpy.ascontiguousarray(vertex_data).view( numpy.dtype((numpy.void, vertex_data.dtype.itemsize * vertex_data.shape[1]))) _, idx = numpy.unique(vertex_byte_view, return_index=True) vertex_data = vertex_data[idx] # Select the unique rows by index. hull = Polygon(vertex_data) if len(vertex_data) >= 3: convex_hull = hull.getConvexHull() offset_hull = self._offsetHull(convex_hull) else: return Polygon([]) # Node has no mesh data, so just return an empty Polygon. # Store the result in the cache self._2d_convex_hull_mesh = mesh self._2d_convex_hull_mesh_world_transform = world_transform self._2d_convex_hull_mesh_result = offset_hull return offset_hull def _getHeadAndFans(self): return Polygon(numpy.array(self._global_stack.getProperty("machine_head_with_fans_polygon", "value"), numpy.float32)) def _compute2DConvexHeadFull(self): return self._compute2DConvexHull().getMinkowskiHull(self._getHeadAndFans()) def _compute2DConvexHeadMin(self): headAndFans = self._getHeadAndFans() mirrored = headAndFans.mirror([0, 0], [0, 1]).mirror([0, 0], [1, 0]) # Mirror horizontally & vertically. head_and_fans = self._getHeadAndFans().intersectionConvexHulls(mirrored) # Min head hull is used for the push free min_head_hull = self._compute2DConvexHull().getMinkowskiHull(head_and_fans) return min_head_hull ## Compensate given 2D polygon with adhesion margin # \return 2D polygon with added margin def _add2DAdhesionMargin(self, poly): # Compensate for raft/skirt/brim # Add extra margin depending on adhesion type adhesion_type = self._global_stack.getProperty("adhesion_type", "value") if adhesion_type == "raft": extra_margin = max(0, self._getSettingProperty("raft_margin", "value")) elif adhesion_type == "brim": extra_margin = max(0, self._getSettingProperty("brim_line_count", "value") * self._getSettingProperty("skirt_brim_line_width", "value")) elif adhesion_type == "none": extra_margin = 0 elif adhesion_type == "skirt": extra_margin = max( 0, self._getSettingProperty("skirt_gap", "value") + self._getSettingProperty("skirt_line_count", "value") * self._getSettingProperty("skirt_brim_line_width", "value")) else: raise Exception("Unknown bed adhesion type. Did you forget to update the convex hull calculations for your new bed adhesion type?") # adjust head_and_fans with extra margin if extra_margin > 0: extra_margin_polygon = Polygon.approximatedCircle(extra_margin) poly = poly.getMinkowskiHull(extra_margin_polygon) return poly ## Offset the convex hull with settings that influence the collision area. # # \param convex_hull Polygon of the original convex hull. # \return New Polygon instance that is offset with everything that # influences the collision area. def _offsetHull(self, convex_hull): horizontal_expansion = max( self._getSettingProperty("xy_offset", "value"), self._getSettingProperty("xy_offset_layer_0", "value") ) mold_width = 0 if self._getSettingProperty("mold_enabled", "value"): mold_width = self._getSettingProperty("mold_width", "value") hull_offset = horizontal_expansion + mold_width if hull_offset > 0: #TODO: Implement Minkowski subtraction for if the offset < 0. expansion_polygon = Polygon(numpy.array([ [-hull_offset, -hull_offset], [-hull_offset, hull_offset], [hull_offset, hull_offset], [hull_offset, -hull_offset] ], numpy.float32)) return convex_hull.getMinkowskiHull(expansion_polygon) else: return convex_hull def _onChanged(self, *args): self._raft_thickness = self._build_volume.getRaftThickness() if not args or args[0] == self._node: self.recomputeConvexHullDelayed() def _onGlobalStackChanged(self): if self._global_stack: self._global_stack.propertyChanged.disconnect(self._onSettingValueChanged) self._global_stack.containersChanged.disconnect(self._onChanged) extruders = ExtruderManager.getInstance().getMachineExtruders(self._global_stack.getId()) for extruder in extruders: extruder.propertyChanged.disconnect(self._onSettingValueChanged) self._global_stack = Application.getInstance().getGlobalContainerStack() if self._global_stack: self._global_stack.propertyChanged.connect(self._onSettingValueChanged) self._global_stack.containersChanged.connect(self._onChanged) extruders = ExtruderManager.getInstance().getMachineExtruders(self._global_stack.getId()) for extruder in extruders: extruder.propertyChanged.connect(self._onSettingValueChanged) self._onChanged() ## Private convenience function to get a setting from the correct extruder (as defined by limit_to_extruder property). def _getSettingProperty(self, setting_key, prop = "value"): per_mesh_stack = self._node.callDecoration("getStack") if per_mesh_stack: return per_mesh_stack.getProperty(setting_key, prop) extruder_index = self._global_stack.getProperty(setting_key, "limit_to_extruder") if extruder_index == "-1": # No limit_to_extruder extruder_stack_id = self._node.callDecoration("getActiveExtruder") if not extruder_stack_id: # Decoration doesn't exist extruder_stack_id = ExtruderManager.getInstance().extruderIds["0"] extruder_stack = ContainerRegistry.getInstance().findContainerStacks(id = extruder_stack_id)[0] return extruder_stack.getProperty(setting_key, prop) else: # Limit_to_extruder is set. The global stack handles this then return self._global_stack.getProperty(setting_key, prop) ## Returns true if node is a descendant or the same as the root node. def __isDescendant(self, root, node): if node is None: return False if root is node: return True return self.__isDescendant(root, node.getParent()) _affected_settings = [ "adhesion_type", "raft_margin", "print_sequence", "skirt_gap", "skirt_line_count", "skirt_brim_line_width", "skirt_distance", "brim_line_count"] ## Settings that change the convex hull. # # If these settings change, the convex hull should be recalculated. _influencing_settings = {"xy_offset", "xy_offset_layer_0", "mold_enabled", "mold_width"}