# Copyright (c) 2018 Ultimaker B.V. # Cura is released under the terms of the LGPLv3 or higher. from typing import List, Optional from UM.Scene.Iterator.DepthFirstIterator import DepthFirstIterator from UM.Logger import Logger from UM.Math.Polygon import Polygon from UM.Math.Vector import Vector from UM.Scene.SceneNode import SceneNode from cura.Arranging.ShapeArray import ShapeArray from cura.BuildVolume import BuildVolume from cura.Scene import ZOffsetDecorator from collections import namedtuple import numpy import copy ## Return object for bestSpot LocationSuggestion = namedtuple("LocationSuggestion", ["x", "y", "penalty_points", "priority"]) ## The Arrange classed is used together with ShapeArray. Use it to find # good locations for objects that you try to put on a build place. # Different priority schemes can be defined so it alters the behavior while using # the same logic. # # Note: Make sure the scale is the same between ShapeArray objects and the Arrange instance. class Arrange: build_volume = None # type: Optional[BuildVolume] def __init__(self, x, y, offset_x, offset_y, scale= 0.5): self._scale = scale # convert input coordinates to arrange coordinates world_x, world_y = int(x * self._scale), int(y * self._scale) self._shape = (world_y, world_x) self._priority = numpy.zeros((world_y, world_x), dtype=numpy.int32) # beware: these are indexed (y, x) self._priority_unique_values = [] self._occupied = numpy.zeros((world_y, world_x), dtype=numpy.int32) # beware: these are indexed (y, x) self._offset_x = int(offset_x * self._scale) self._offset_y = int(offset_y * self._scale) self._last_priority = 0 self._is_empty = True ## Helper to create an Arranger instance # # Either fill in scene_root and create will find all sliceable nodes by itself, # or use fixed_nodes to provide the nodes yourself. # \param scene_root Root for finding all scene nodes # \param fixed_nodes Scene nodes to be placed @classmethod def create(cls, scene_root = None, fixed_nodes = None, scale = 0.5, x = 350, y = 250, min_offset = 8): arranger = Arrange(x, y, x // 2, y // 2, scale = scale) arranger.centerFirst() if fixed_nodes is None: fixed_nodes = [] for node_ in DepthFirstIterator(scene_root): # Only count sliceable objects if node_.callDecoration("isSliceable"): fixed_nodes.append(node_) # Place all objects fixed nodes for fixed_node in fixed_nodes: vertices = fixed_node.callDecoration("getConvexHullHead") or fixed_node.callDecoration("getConvexHull") if not vertices: continue vertices = vertices.getMinkowskiHull(Polygon.approximatedCircle(min_offset)) points = copy.deepcopy(vertices._points) # After scaling (like up to 0.1 mm) the node might not have points if not points.size: continue shape_arr = ShapeArray.fromPolygon(points, scale = scale) arranger.place(0, 0, shape_arr) # If a build volume was set, add the disallowed areas if Arrange.build_volume: disallowed_areas = Arrange.build_volume.getDisallowedAreasNoBrim() for area in disallowed_areas: points = copy.deepcopy(area._points) shape_arr = ShapeArray.fromPolygon(points, scale = scale) arranger.place(0, 0, shape_arr, update_empty = False) return arranger ## This resets the optimization for finding location based on size def resetLastPriority(self): self._last_priority = 0 ## Find placement for a node (using offset shape) and place it (using hull shape) # return the nodes that should be placed # \param node # \param offset_shape_arr ShapeArray with offset, for placing the shape # \param hull_shape_arr ShapeArray without offset, used to find location def findNodePlacement(self, node: SceneNode, offset_shape_arr: ShapeArray, hull_shape_arr: ShapeArray, step = 1): best_spot = self.bestSpot( hull_shape_arr, start_prio = self._last_priority, step = step) x, y = best_spot.x, best_spot.y # Save the last priority. self._last_priority = best_spot.priority # Ensure that the object is above the build platform node.removeDecorator(ZOffsetDecorator.ZOffsetDecorator) bbox = node.getBoundingBox() if bbox: center_y = node.getWorldPosition().y - bbox.bottom else: center_y = 0 if x is not None: # We could find a place node.setPosition(Vector(x, center_y, y)) found_spot = True self.place(x, y, offset_shape_arr) # place the object in arranger else: Logger.log("d", "Could not find spot!") found_spot = False node.setPosition(Vector(200, center_y, 100)) return found_spot ## Fill priority, center is best. Lower value is better # This is a strategy for the arranger. def centerFirst(self): # Square distance: creates a more round shape self._priority = numpy.fromfunction( lambda j, i: (self._offset_x - i) ** 2 + (self._offset_y - j) ** 2, self._shape, dtype=numpy.int32) self._priority_unique_values = numpy.unique(self._priority) self._priority_unique_values.sort() ## Fill priority, back is best. Lower value is better # This is a strategy for the arranger. def backFirst(self): self._priority = numpy.fromfunction( lambda j, i: 10 * j + abs(self._offset_x - i), self._shape, dtype=numpy.int32) self._priority_unique_values = numpy.unique(self._priority) self._priority_unique_values.sort() ## Return the amount of "penalty points" for polygon, which is the sum of priority # None if occupied # \param x x-coordinate to check shape # \param y y-coordinate # \param shape_arr the ShapeArray object to place def checkShape(self, x, y, shape_arr): x = int(self._scale * x) y = int(self._scale * y) offset_x = x + self._offset_x + shape_arr.offset_x offset_y = y + self._offset_y + shape_arr.offset_y if offset_x < 0 or offset_y < 0: return None # out of bounds in self._occupied occupied_x_max = offset_x + shape_arr.arr.shape[1] occupied_y_max = offset_y + shape_arr.arr.shape[0] if occupied_x_max > self._occupied.shape[1] + 1 or occupied_y_max > self._occupied.shape[0] + 1: return None # out of bounds in self._occupied occupied_slice = self._occupied[ offset_y:occupied_y_max, offset_x:occupied_x_max] try: if numpy.any(occupied_slice[numpy.where(shape_arr.arr == 1)]): return None except IndexError: # out of bounds if you try to place an object outside return None prio_slice = self._priority[ offset_y:offset_y + shape_arr.arr.shape[0], offset_x:offset_x + shape_arr.arr.shape[1]] return numpy.sum(prio_slice[numpy.where(shape_arr.arr == 1)]) ## Find "best" spot for ShapeArray # Return namedtuple with properties x, y, penalty_points, priority. # \param shape_arr ShapeArray # \param start_prio Start with this priority value (and skip the ones before) # \param step Slicing value, higher = more skips = faster but less accurate def bestSpot(self, shape_arr, start_prio = 0, step = 1): start_idx_list = numpy.where(self._priority_unique_values == start_prio) if start_idx_list: start_idx = start_idx_list[0][0] else: start_idx = 0 for priority in self._priority_unique_values[start_idx::step]: tryout_idx = numpy.where(self._priority == priority) for idx in range(len(tryout_idx[0])): x = tryout_idx[1][idx] y = tryout_idx[0][idx] projected_x = int((x - self._offset_x) / self._scale) projected_y = int((y - self._offset_y) / self._scale) penalty_points = self.checkShape(projected_x, projected_y, shape_arr) if penalty_points is not None: return LocationSuggestion(x = projected_x, y = projected_y, penalty_points = penalty_points, priority = priority) return LocationSuggestion(x = None, y = None, penalty_points = None, priority = priority) # No suitable location found :-( ## Place the object. # Marks the locations in self._occupied and self._priority # \param x x-coordinate # \param y y-coordinate # \param shape_arr ShapeArray object # \param update_empty updates the _is_empty, used when adding disallowed areas def place(self, x, y, shape_arr, update_empty = True): x = int(self._scale * x) y = int(self._scale * y) offset_x = x + self._offset_x + shape_arr.offset_x offset_y = y + self._offset_y + shape_arr.offset_y shape_y, shape_x = self._occupied.shape min_x = min(max(offset_x, 0), shape_x - 1) min_y = min(max(offset_y, 0), shape_y - 1) max_x = min(max(offset_x + shape_arr.arr.shape[1], 0), shape_x - 1) max_y = min(max(offset_y + shape_arr.arr.shape[0], 0), shape_y - 1) occupied_slice = self._occupied[min_y:max_y, min_x:max_x] # we use a slice of shape because it can be out of bounds new_occupied = numpy.where(shape_arr.arr[ min_y - offset_y:max_y - offset_y, min_x - offset_x:max_x - offset_x] == 1) if update_empty and new_occupied: self._is_empty = False occupied_slice[new_occupied] = 1 # Set priority to low (= high number), so it won't get picked at trying out. prio_slice = self._priority[min_y:max_y, min_x:max_x] prio_slice[new_occupied] = 999 @property def isEmpty(self): return self._is_empty