# Copyright (c) 2016 Ultimaker B.V. # Cura is released under the terms of the LGPLv3 or higher. from PyQt5.QtCore import QTimer from UM.Application import Application from UM.Math.Polygon import Polygon from UM.Scene.SceneNodeDecorator import SceneNodeDecorator from UM.Settings.ContainerRegistry import ContainerRegistry from cura.Settings.ExtruderManager import ExtruderManager from cura.Scene import ConvexHullNode import numpy from typing import TYPE_CHECKING, Any, Optional if TYPE_CHECKING: from UM.Scene.SceneNode import SceneNode from cura.Settings.GlobalStack import GlobalStack from UM.Mesh.MeshData import MeshData from UM.Math.Matrix import Matrix ## The convex hull decorator is a scene node decorator that adds the convex hull functionality to a scene node. # If a scene node has a convex hull decorator, it will have a shadow in which other objects can not be printed. class ConvexHullDecorator(SceneNodeDecorator): def __init__(self) -> None: super().__init__() self._convex_hull_node = None # type: Optional["SceneNode"] self._init2DConvexHullCache() self._global_stack = None # type: Optional[GlobalStack] # Make sure the timer is created on the main thread self._recompute_convex_hull_timer = None # type: Optional[QTimer] from cura.CuraApplication import CuraApplication if CuraApplication.getInstance() is not None: CuraApplication.getInstance().callLater(self.createRecomputeConvexHullTimer) self._raft_thickness = 0.0 self._build_volume = CuraApplication.getInstance().getBuildVolume() self._build_volume.raftThicknessChanged.connect(self._onChanged) CuraApplication.getInstance().globalContainerStackChanged.connect(self._onGlobalStackChanged) CuraApplication.getInstance().getController().toolOperationStarted.connect(self._onChanged) CuraApplication.getInstance().getController().toolOperationStopped.connect(self._onChanged) self._onGlobalStackChanged() def createRecomputeConvexHullTimer(self) -> None: self._recompute_convex_hull_timer = QTimer() self._recompute_convex_hull_timer.setInterval(200) self._recompute_convex_hull_timer.setSingleShot(True) self._recompute_convex_hull_timer.timeout.connect(self.recomputeConvexHull) def setNode(self, node: "SceneNode") -> None: previous_node = self._node # Disconnect from previous node signals if previous_node is not None and node is not previous_node: previous_node.boundingBoxChanged.disconnect(self._onChanged) super().setNode(node) node.boundingBoxChanged.connect(self._onChanged) per_object_stack = node.callDecoration("getStack") if per_object_stack: per_object_stack.propertyChanged.connect(self._onSettingValueChanged) self._onChanged() ## Force that a new (empty) object is created upon copy. def __deepcopy__(self, memo): return ConvexHullDecorator() ## The polygon representing the 2D adhesion area. # If no adhesion is used, the regular convex hull is returned def getAdhesionArea(self) -> Optional[Polygon]: if self._node is None: return None hull = self._compute2DConvexHull() if hull is None: return None return self._add2DAdhesionMargin(hull) ## Get the unmodified 2D projected convex hull of the node (if any) # In case of one-at-a-time, this includes adhesion and head+fans clearance def getConvexHull(self) -> Optional[Polygon]: if self._node is None: return None if self._node.callDecoration("isNonPrintingMesh"): return None # Parent can be None if node is just loaded. if self._isSingularOneAtATimeNode(): hull = self.getConvexHullHeadFull() if hull is None: return None hull = self._add2DAdhesionMargin(hull) return hull return self._compute2DConvexHull() ## For one at the time this is the convex hull of the node with the full head size # In case of printing all at once this is None. def getConvexHullHeadFull(self) -> Optional[Polygon]: if self._node is None: return None if self._isSingularOneAtATimeNode(): return self._compute2DConvexHeadFull() return None @staticmethod def hasGroupAsParent(node: "SceneNode") -> bool: parent = node.getParent() if parent is None: return False return bool(parent.callDecoration("isGroup")) ## Get convex hull of the object + head size # In case of printing all at once this is None. # For one at the time this is area with intersection of mirrored head def getConvexHullHead(self) -> Optional[Polygon]: if self._node is None: return None if self._node.callDecoration("isNonPrintingMesh"): return None if self._isSingularOneAtATimeNode(): head_with_fans = self._compute2DConvexHeadMin() if head_with_fans is None: return None head_with_fans_with_adhesion_margin = self._add2DAdhesionMargin(head_with_fans) return head_with_fans_with_adhesion_margin return None ## Get convex hull of the node # In case of printing all at once this None?? # For one at the time this is the area without the head. def getConvexHullBoundary(self) -> Optional[Polygon]: if self._node is None: return None if self._node.callDecoration("isNonPrintingMesh"): return None if self._isSingularOneAtATimeNode(): # Printing one at a time and it's not an object in a group return self._compute2DConvexHull() return None ## Get the buildplate polygon where will be printed # In case of printing all at once this is the same as convex hull (no individual adhesion) # For one at the time this includes the adhesion area def getPrintingArea(self) -> Optional[Polygon]: if self._isSingularOneAtATimeNode(): # In one-at-a-time mode, every printed object gets it's own adhesion printing_area = self.getAdhesionArea() else: printing_area = self.getConvexHull() return printing_area ## The same as recomputeConvexHull, but using a timer if it was set. def recomputeConvexHullDelayed(self) -> None: if self._recompute_convex_hull_timer is not None: self._recompute_convex_hull_timer.start() else: self.recomputeConvexHull() def recomputeConvexHull(self) -> None: controller = Application.getInstance().getController() root = controller.getScene().getRoot() if self._node is None or controller.isToolOperationActive() or not self.__isDescendant(root, self._node): # If the tool operation is still active, we need to compute the convex hull later after the controller is # no longer active. if controller.isToolOperationActive(): self.recomputeConvexHullDelayed() return if self._convex_hull_node: self._convex_hull_node.setParent(None) self._convex_hull_node = None return if self._convex_hull_node: self._convex_hull_node.setParent(None) hull_node = ConvexHullNode.ConvexHullNode(self._node, self.getPrintingArea(), self._raft_thickness, root) self._convex_hull_node = hull_node def _onSettingValueChanged(self, key: str, property_name: str) -> None: if property_name != "value": # Not the value that was changed. return if key in self._affected_settings: self._onChanged() if key in self._influencing_settings: self._init2DConvexHullCache() # Invalidate the cache. self._onChanged() def _init2DConvexHullCache(self) -> None: # Cache for the group code path in _compute2DConvexHull() self._2d_convex_hull_group_child_polygon = None # type: Optional[Polygon] self._2d_convex_hull_group_result = None # type: Optional[Polygon] # Cache for the mesh code path in _compute2DConvexHull() self._2d_convex_hull_mesh = None # type: Optional[MeshData] self._2d_convex_hull_mesh_world_transform = None # type: Optional[Matrix] self._2d_convex_hull_mesh_result = None # type: Optional[Polygon] def _compute2DConvexHull(self) -> Optional[Polygon]: if self._node is None: return None if self._node.callDecoration("isGroup"): points = numpy.zeros((0, 2), dtype=numpy.int32) for child in self._node.getChildren(): child_hull = child.callDecoration("_compute2DConvexHull") if child_hull: try: points = numpy.append(points, child_hull.getPoints(), axis = 0) except ValueError: pass if points.size < 3: return None child_polygon = Polygon(points) # Check the cache if child_polygon == self._2d_convex_hull_group_child_polygon: return self._2d_convex_hull_group_result convex_hull = child_polygon.getConvexHull() #First calculate the normal convex hull around the points. offset_hull = self._offsetHull(convex_hull) #Then apply the offset from the settings. # Store the result in the cache self._2d_convex_hull_group_child_polygon = child_polygon self._2d_convex_hull_group_result = offset_hull return offset_hull else: offset_hull = Polygon([]) mesh = self._node.getMeshData() if mesh is None: return Polygon([]) # Node has no mesh data, so just return an empty Polygon. world_transform = self._node.getWorldTransformation() # Check the cache if mesh is self._2d_convex_hull_mesh and world_transform == self._2d_convex_hull_mesh_world_transform: return self._2d_convex_hull_mesh_result vertex_data = mesh.getConvexHullTransformedVertices(world_transform) # Don't use data below 0. # TODO; We need a better check for this as this gives poor results for meshes with long edges. # Do not throw away vertices: the convex hull may be too small and objects can collide. # vertex_data = vertex_data[vertex_data[:,1] >= -0.01] if len(vertex_data) >= 4: # type: ignore # mypy and numpy don't play along well just yet. # Round the vertex data to 1/10th of a mm, then remove all duplicate vertices # This is done to greatly speed up further convex hull calculations as the convex hull # becomes much less complex when dealing with highly detailed models. vertex_data = numpy.round(vertex_data, 1) vertex_data = vertex_data[:, [0, 2]] # Drop the Y components to project to 2D. # Grab the set of unique points. # # This basically finds the unique rows in the array by treating them as opaque groups of bytes # which are as long as the 2 float64s in each row, and giving this view to numpy.unique() to munch. # See http://stackoverflow.com/questions/16970982/find-unique-rows-in-numpy-array vertex_byte_view = numpy.ascontiguousarray(vertex_data).view( numpy.dtype((numpy.void, vertex_data.dtype.itemsize * vertex_data.shape[1]))) _, idx = numpy.unique(vertex_byte_view, return_index = True) vertex_data = vertex_data[idx] # Select the unique rows by index. hull = Polygon(vertex_data) if len(vertex_data) >= 3: convex_hull = hull.getConvexHull() offset_hull = self._offsetHull(convex_hull) # Store the result in the cache self._2d_convex_hull_mesh = mesh self._2d_convex_hull_mesh_world_transform = world_transform self._2d_convex_hull_mesh_result = offset_hull return offset_hull def _getHeadAndFans(self) -> Polygon: if not self._global_stack: return Polygon() polygon = Polygon(numpy.array(self._global_stack.getHeadAndFansCoordinates(), numpy.float32)) offset_x = self._getSettingProperty("machine_nozzle_offset_x", "value") offset_y = self._getSettingProperty("machine_nozzle_offset_y", "value") return polygon.translate(-offset_x, -offset_y) def _compute2DConvexHeadFull(self) -> Optional[Polygon]: convex_hull = self._compute2DConvexHull() if convex_hull: return convex_hull.getMinkowskiHull(self._getHeadAndFans()) return None def _compute2DConvexHeadMin(self) -> Optional[Polygon]: head_and_fans = self._getHeadAndFans() mirrored = head_and_fans.mirror([0, 0], [0, 1]).mirror([0, 0], [1, 0]) # Mirror horizontally & vertically. head_and_fans = self._getHeadAndFans().intersectionConvexHulls(mirrored) # Min head hull is used for the push free convex_hull = self._compute2DConvexHull() if convex_hull: return convex_hull.getMinkowskiHull(head_and_fans) return None ## Compensate given 2D polygon with adhesion margin # \return 2D polygon with added margin def _add2DAdhesionMargin(self, poly: Polygon) -> Polygon: if not self._global_stack: return Polygon() # Compensate for raft/skirt/brim # Add extra margin depending on adhesion type adhesion_type = self._global_stack.getProperty("adhesion_type", "value") max_length_available = 0.5 * min( self._getSettingProperty("machine_width", "value"), self._getSettingProperty("machine_depth", "value") ) if adhesion_type == "raft": extra_margin = min(max_length_available, max(0, self._getSettingProperty("raft_margin", "value"))) elif adhesion_type == "brim": extra_margin = min(max_length_available, max(0, self._getSettingProperty("brim_line_count", "value") * self._getSettingProperty("skirt_brim_line_width", "value"))) elif adhesion_type == "none": extra_margin = 0 elif adhesion_type == "skirt": extra_margin = min(max_length_available, max( 0, self._getSettingProperty("skirt_gap", "value") + self._getSettingProperty("skirt_line_count", "value") * self._getSettingProperty("skirt_brim_line_width", "value"))) else: raise Exception("Unknown bed adhesion type. Did you forget to update the convex hull calculations for your new bed adhesion type?") # Adjust head_and_fans with extra margin if extra_margin > 0: extra_margin_polygon = Polygon.approximatedCircle(extra_margin) poly = poly.getMinkowskiHull(extra_margin_polygon) return poly ## Offset the convex hull with settings that influence the collision area. # # \param convex_hull Polygon of the original convex hull. # \return New Polygon instance that is offset with everything that # influences the collision area. def _offsetHull(self, convex_hull: Polygon) -> Polygon: horizontal_expansion = max( self._getSettingProperty("xy_offset", "value"), self._getSettingProperty("xy_offset_layer_0", "value") ) mold_width = 0 if self._getSettingProperty("mold_enabled", "value"): mold_width = self._getSettingProperty("mold_width", "value") hull_offset = horizontal_expansion + mold_width if hull_offset > 0: #TODO: Implement Minkowski subtraction for if the offset < 0. expansion_polygon = Polygon(numpy.array([ [-hull_offset, -hull_offset], [-hull_offset, hull_offset], [hull_offset, hull_offset], [hull_offset, -hull_offset] ], numpy.float32)) return convex_hull.getMinkowskiHull(expansion_polygon) else: return convex_hull def _onChanged(self, *args) -> None: self._raft_thickness = self._build_volume.getRaftThickness() if not args or args[0] == self._node: self.recomputeConvexHullDelayed() def _onGlobalStackChanged(self) -> None: if self._global_stack: self._global_stack.propertyChanged.disconnect(self._onSettingValueChanged) self._global_stack.containersChanged.disconnect(self._onChanged) extruders = ExtruderManager.getInstance().getActiveExtruderStacks() for extruder in extruders: extruder.propertyChanged.disconnect(self._onSettingValueChanged) self._global_stack = Application.getInstance().getGlobalContainerStack() if self._global_stack: self._global_stack.propertyChanged.connect(self._onSettingValueChanged) self._global_stack.containersChanged.connect(self._onChanged) extruders = ExtruderManager.getInstance().getActiveExtruderStacks() for extruder in extruders: extruder.propertyChanged.connect(self._onSettingValueChanged) self._onChanged() ## Private convenience function to get a setting from the correct extruder (as defined by limit_to_extruder property). def _getSettingProperty(self, setting_key: str, prop: str = "value") -> Any: if self._global_stack is None or self._node is None: return None per_mesh_stack = self._node.callDecoration("getStack") if per_mesh_stack: return per_mesh_stack.getProperty(setting_key, prop) extruder_index = self._global_stack.getProperty(setting_key, "limit_to_extruder") if extruder_index == "-1": # No limit_to_extruder extruder_stack_id = self._node.callDecoration("getActiveExtruder") if not extruder_stack_id: # Decoration doesn't exist extruder_stack_id = ExtruderManager.getInstance().extruderIds["0"] extruder_stack = ContainerRegistry.getInstance().findContainerStacks(id = extruder_stack_id)[0] return extruder_stack.getProperty(setting_key, prop) else: # Limit_to_extruder is set. The global stack handles this then return self._global_stack.getProperty(setting_key, prop) ## Returns True if node is a descendant or the same as the root node. def __isDescendant(self, root: "SceneNode", node: Optional["SceneNode"]) -> bool: if node is None: return False if root is node: return True return self.__isDescendant(root, node.getParent()) ## True if print_sequence is one_at_a_time and _node is not part of a group def _isSingularOneAtATimeNode(self) -> bool: if self._node is None: return False return self._global_stack is not None \ and self._global_stack.getProperty("print_sequence", "value") == "one_at_a_time" \ and not self.hasGroupAsParent(self._node) _affected_settings = [ "adhesion_type", "raft_margin", "print_sequence", "skirt_gap", "skirt_line_count", "skirt_brim_line_width", "skirt_distance", "brim_line_count"] ## Settings that change the convex hull. # # If these settings change, the convex hull should be recalculated. _influencing_settings = {"xy_offset", "xy_offset_layer_0", "mold_enabled", "mold_width", "anti_overhang_mesh", "infill_mesh", "cutting_mesh"}