# Copyright (c) 2015 Ultimaker B.V. # Cura is released under the terms of the AGPLv3 or higher. from UM.Scene.Iterator import Iterator from UM.Scene.SceneNode import SceneNode from functools import cmp_to_key from UM.Application import Application ## Iterator that returns a list of nodes in the order that they need to be printed # If there is no solution an empty list is returned. # Take note that the list of nodes can have children (that may or may not contain mesh data) class OneAtATimeIterator(Iterator.Iterator): def __init__(self, scene_node): super().__init__(scene_node) # Call super to make multiple inheritence work. self._hit_map = [[]] self._original_node_list = [] def _fillStack(self): node_list = [] for node in self._scene_node.getChildren(): if not type(node) is SceneNode: continue if node.callDecoration("getConvexHull"): node_list.append(node) if len(node_list) < 2: self._node_stack = node_list[:] return # Copy the list self._original_node_list = node_list[:] ## Initialise the hit map (pre-compute all hits between all objects) self._hit_map = [[self._checkHit(i,j) for i in node_list] for j in node_list] # Check if we have to files that block eachother. If this is the case, there is no solution! for a in range(0,len(node_list)): for b in range(0,len(node_list)): if a != b and self._hit_map[a][b] and self._hit_map[b][a]: return # Sort the original list so that items that block the most other objects are at the beginning. # This does not decrease the worst case running time, but should improve it in most cases. sorted(node_list, key = cmp_to_key(self._calculateScore)) todo_node_list = [_ObjectOrder([], node_list)] while len(todo_node_list) > 0: current = todo_node_list.pop() for node in current.todo: # Check if the object can be placed with what we have and still allows for a solution in the future if not self._checkHitMultiple(node, current.order) and not self._checkBlockMultiple(node, current.todo): # We found a possible result. Create new todo & order list. new_todo_list = current.todo[:] new_todo_list.remove(node) new_order = current.order[:] + [node] if len(new_todo_list) == 0: # We have no more nodes to check, so quit looking. todo_node_list = None self._node_stack = new_order return todo_node_list.append(_ObjectOrder(new_order, new_todo_list)) self._node_stack = [] #No result found! # Check if first object can be printed before the provided list (using the hit map) def _checkHitMultiple(self, node, other_nodes): node_index = self._original_node_list.index(node) for other_node in other_nodes: other_node_index = self._original_node_list.index(other_node) if self._hit_map[node_index][other_node_index]: return True return False def _checkBlockMultiple(self, node, other_nodes): node_index = self._original_node_list.index(node) for other_node in other_nodes: other_node_index = self._original_node_list.index(other_node) if self._hit_map[other_node_index][node_index] and node_index != other_node_index: return True return False ## Calculate score simply sums the number of other objects it 'blocks' def _calculateScore(self, a, b): score_a = sum(self._hit_map[self._original_node_list.index(a)]) score_b = sum(self._hit_map[self._original_node_list.index(b)]) return score_a - score_b # Checks if A can be printed before B def _checkHit(self, a, b): if a == b: return False overlap = a.callDecoration("getConvexHullBoundary").intersectsPolygon(b.callDecoration("getConvexHullHeadFull")) if overlap: return True else: return False ## Internal object used to keep track of a possible order in which to print objects. class _ObjectOrder(): def __init__(self, order, todo): """ :param order: List of indexes in which to print objects, ordered by printing order. :param todo: List of indexes which are not yet inserted into the order list. """ self.order = order self.todo = todo