# Copyright (c) 2021 Ultimaker B.V. # Cura is released under the terms of the LGPLv3 or higher. import numpy import math from typing import List, Optional, TYPE_CHECKING, Any, Set, cast, Iterable, Dict from UM.Logger import Logger from UM.Mesh.MeshData import MeshData from UM.Mesh.MeshBuilder import MeshBuilder from UM.Application import Application #To modify the maximum zoom level. from UM.i18n import i18nCatalog from UM.Scene.Platform import Platform from UM.Scene.Iterator.BreadthFirstIterator import BreadthFirstIterator from UM.Scene.SceneNode import SceneNode from UM.Resources import Resources from UM.Math.Vector import Vector from UM.Math.Matrix import Matrix from UM.Math.Color import Color from UM.Math.AxisAlignedBox import AxisAlignedBox from UM.Math.Polygon import Polygon from UM.Message import Message from UM.Signal import Signal from UM.View.RenderBatch import RenderBatch from UM.View.GL.OpenGL import OpenGL from cura.Settings.GlobalStack import GlobalStack from cura.Scene.CuraSceneNode import CuraSceneNode from cura.Settings.ExtruderManager import ExtruderManager from PyQt6.QtCore import QTimer if TYPE_CHECKING: from cura.CuraApplication import CuraApplication from cura.Settings.ExtruderStack import ExtruderStack from UM.Settings.ContainerStack import ContainerStack catalog = i18nCatalog("cura") # Radius of disallowed area in mm around prime. I.e. how much distance to keep from prime position. PRIME_CLEARANCE = 6.5 class BuildVolume(SceneNode): """Build volume is a special kind of node that is responsible for rendering the printable area & disallowed areas.""" raftThicknessChanged = Signal() def __init__(self, application: "CuraApplication", parent: Optional[SceneNode] = None) -> None: super().__init__(parent) self._application = application self._machine_manager = self._application.getMachineManager() self._volume_outline_color = None # type: Optional[Color] self._x_axis_color = None # type: Optional[Color] self._y_axis_color = None # type: Optional[Color] self._z_axis_color = None # type: Optional[Color] self._disallowed_area_color = None # type: Optional[Color] self._error_area_color = None # type: Optional[Color] self._width = 0 # type: float self._height = 0 # type: float self._depth = 0 # type: float self._shape = "" # type: str self._scale_vector = Vector(1.0, 1.0, 1.0) self._shader = None self._origin_mesh = None # type: Optional[MeshData] self._origin_line_length = 20 self._origin_line_width = 1 self._enabled = False self._grid_mesh = None # type: Optional[MeshData] self._grid_shader = None self._disallowed_areas = [] # type: List[Polygon] self._disallowed_areas_no_brim = [] # type: List[Polygon] self._disallowed_area_mesh = None # type: Optional[MeshData] self._disallowed_area_size = 0. self._error_areas = [] # type: List[Polygon] self._error_mesh = None # type: Optional[MeshData] self.setCalculateBoundingBox(False) self._volume_aabb = None # type: Optional[AxisAlignedBox] self._raft_thickness = 0.0 self._extra_z_clearance = 0.0 self._adhesion_type = None # type: Any self._platform = Platform(self) self._edge_disallowed_size = None self._build_volume_message = Message(catalog.i18nc("@info:status", "The build volume height has been reduced due to the value of the" " \"Print Sequence\" setting to prevent the gantry from colliding" " with printed models."), title = catalog.i18nc("@info:title", "Build Volume"), message_type = Message.MessageType.WARNING) self._global_container_stack = None # type: Optional[GlobalStack] self._stack_change_timer = QTimer() self._stack_change_timer.setInterval(100) self._stack_change_timer.setSingleShot(True) self._stack_change_timer.timeout.connect(self._onStackChangeTimerFinished) self._application.globalContainerStackChanged.connect(self._onStackChanged) self._engine_ready = False self._application.engineCreatedSignal.connect(self._onEngineCreated) self._has_errors = False self._application.getController().getScene().sceneChanged.connect(self._onSceneChanged) # Objects loaded at the moment. We are connected to the property changed events of these objects. self._scene_objects = set() # type: Set[SceneNode] # Number of toplevel printable meshes. If there is more than one, the build volume needs to take account of the gantry height in One at a Time printing. self._root_printable_object_count = 0 self._scene_change_timer = QTimer() self._scene_change_timer.setInterval(200) self._scene_change_timer.setSingleShot(True) self._scene_change_timer.timeout.connect(self._onSceneChangeTimerFinished) self._setting_change_timer = QTimer() self._setting_change_timer.setInterval(150) self._setting_change_timer.setSingleShot(True) self._setting_change_timer.timeout.connect(self._onSettingChangeTimerFinished) # Must be after setting _build_volume_message, apparently that is used in getMachineManager. # activeQualityChanged is always emitted after setActiveVariant, setActiveMaterial and setActiveQuality. # Therefore this works. self._machine_manager.activeQualityChanged.connect(self._onStackChanged) # Enable and disable extruder self._machine_manager.extruderChanged.connect(self.updateNodeBoundaryCheck) # List of settings which were updated self._changed_settings_since_last_rebuild = [] # type: List[str] def _onSceneChanged(self, source): if self._global_container_stack: # Ignore anything that is not something we can slice in the first place! if source.callDecoration("isSliceable"): self._scene_change_timer.start() def _onSceneChangeTimerFinished(self): root = self._application.getController().getScene().getRoot() new_scene_objects = set(node for node in BreadthFirstIterator(root) if node.callDecoration("isSliceable")) if new_scene_objects != self._scene_objects: for node in new_scene_objects - self._scene_objects: #Nodes that were added to the scene. self._updateNodeListeners(node) node.decoratorsChanged.connect(self._updateNodeListeners) # Make sure that decoration changes afterwards also receive the same treatment for node in self._scene_objects - new_scene_objects: #Nodes that were removed from the scene. per_mesh_stack = node.callDecoration("getStack") if per_mesh_stack: per_mesh_stack.propertyChanged.disconnect(self._onSettingPropertyChanged) active_extruder_changed = node.callDecoration("getActiveExtruderChangedSignal") if active_extruder_changed is not None: node.callDecoration("getActiveExtruderChangedSignal").disconnect(self._updateDisallowedAreasAndRebuild) node.decoratorsChanged.disconnect(self._updateNodeListeners) self.rebuild() self._scene_objects = new_scene_objects # This also needs to be called when objects are grouped/ungrouped, # which is not reflected in a change in self._scene_objects self._updateRootPrintableObjectCount() def _updateRootPrintableObjectCount(self): # Get the number of models in the scene root, excluding modifier meshes and counting grouped models as 1 root = self._application.getController().getScene().getRoot() scene_objects = set(node for node in BreadthFirstIterator(root) if node.callDecoration("isSliceable") or node.callDecoration("isGroup")) new_root_printable_object_count = len(list(node for node in scene_objects if node.getParent() == root and not ( node_stack := node.callDecoration("getStack") and ( node.callDecoration("getStack").getProperty("anti_overhang_mesh", "value") or node.callDecoration("getStack").getProperty("support_mesh", "value") or node.callDecoration("getStack").getProperty("cutting_mesh", "value") or node.callDecoration("getStack").getProperty("infill_mesh", "value") )) )) if new_root_printable_object_count != self._root_printable_object_count: self._root_printable_object_count = new_root_printable_object_count self._onSettingPropertyChanged("print_sequence", "value") # Create fake event, so right settings are triggered. def _updateNodeListeners(self, node: SceneNode): """Updates the listeners that listen for changes in per-mesh stacks. :param node: The node for which the decorators changed. """ per_mesh_stack = node.callDecoration("getStack") if per_mesh_stack: per_mesh_stack.propertyChanged.connect(self._onSettingPropertyChanged) active_extruder_changed = node.callDecoration("getActiveExtruderChangedSignal") if active_extruder_changed is not None: active_extruder_changed.connect(self._updateDisallowedAreasAndRebuild) def setWidth(self, width: float) -> None: self._width = width def getWidth(self) -> float: return self._width def setHeight(self, height: float) -> None: self._height = height def getHeight(self) -> float: return self._height def setDepth(self, depth: float) -> None: self._depth = depth def getDepth(self) -> float: return self._depth def setShape(self, shape: str) -> None: if shape: self._shape = shape def getShape(self) -> str: return self._shape def getDiagonalSize(self) -> float: """Get the length of the 3D diagonal through the build volume. This gives a sense of the scale of the build volume in general. :return: length of the 3D diagonal through the build volume """ return math.sqrt(self._width * self._width + self._height * self._height + self._depth * self._depth) def getDisallowedAreas(self) -> List[Polygon]: return self._disallowed_areas def getDisallowedAreasNoBrim(self) -> List[Polygon]: return self._disallowed_areas_no_brim def setDisallowedAreas(self, areas: List[Polygon]): self._disallowed_areas = areas def render(self, renderer): if not self.getMeshData() or not self.isVisible(): return True theme = self._application.getTheme() if not self._shader: self._shader = OpenGL.getInstance().createShaderProgram(Resources.getPath(Resources.Shaders, "default.shader")) self._grid_shader = OpenGL.getInstance().createShaderProgram(Resources.getPath(Resources.Shaders, "grid.shader")) self._grid_shader.setUniformValue("u_gridColor0", Color(*theme.getColor("buildplate_grid").getRgb())) self._grid_shader.setUniformValue("u_gridColor1", Color(*theme.getColor("buildplate_grid_minor").getRgb())) plate_color = Color(*theme.getColor("buildplate").getRgb()) if self._global_container_stack.getMetaDataEntry("has_textured_buildplate", False): plate_color.setA(0.5) self._grid_shader.setUniformValue("u_plateColor", plate_color) renderer.queueNode(self, mode = RenderBatch.RenderMode.Lines) renderer.queueNode(self, mesh = self._origin_mesh, backface_cull = True) renderer.queueNode(self, mesh = self._grid_mesh, shader = self._grid_shader, backface_cull = True, transparent = True, sort = -10) if self._disallowed_area_mesh: renderer.queueNode(self, mesh = self._disallowed_area_mesh, shader = self._shader, transparent = True, backface_cull = True, sort = -5) if self._error_mesh: renderer.queueNode(self, mesh=self._error_mesh, shader=self._shader, transparent=True, backface_cull=True, sort=-8) return True def updateNodeBoundaryCheck(self): """For every sliceable node, update node._outside_buildarea""" if not self._global_container_stack: return root = self._application.getController().getScene().getRoot() nodes = cast(List[SceneNode], list(cast(Iterable, BreadthFirstIterator(root)))) group_nodes = [] # type: List[SceneNode] build_volume_bounding_box = self.getBoundingBox() if build_volume_bounding_box: # It's over 9000! # We set this to a very low number, as we do allow models to intersect the build plate. # This means the model gets cut off at the build plate. build_volume_bounding_box = build_volume_bounding_box.set(bottom=-9001) else: # No bounding box. This is triggered when running Cura from command line with a model for the first time # In that situation there is a model, but no machine (and therefore no build volume. return for node in nodes: # Need to check group nodes later if node.callDecoration("isGroup"): group_nodes.append(node) # Keep list of affected group_nodes if node.callDecoration("isSliceable") or node.callDecoration("isGroup"): if not isinstance(node, CuraSceneNode): continue if node.collidesWithBbox(build_volume_bounding_box): node.setOutsideBuildArea(True) continue if node.collidesWithAreas(self.getDisallowedAreas()): node.setOutsideBuildArea(True) continue # If the entire node is below the build plate, still mark it as outside. node_bounding_box = node.getBoundingBox() if node_bounding_box and node_bounding_box.top < 0 and not node.getParent().callDecoration("isGroup"): node.setOutsideBuildArea(True) continue # Mark the node as outside build volume if the set extruder is disabled extruder_position = node.callDecoration("getActiveExtruderPosition") try: if not self._global_container_stack.extruderList[int(extruder_position)].isEnabled and not node.callDecoration("isGroup"): node.setOutsideBuildArea(True) continue except IndexError: # Happens when the extruder list is too short. We're not done building the printer in memory yet. continue except TypeError: # Happens when extruder_position is None. This object has no extruder decoration. continue node.setOutsideBuildArea(False) # Group nodes should override the _outside_buildarea property of their children. for group_node in group_nodes: children = group_node.getAllChildren() # Check if one or more children are non-printable and if so, set the parent as non-printable: for child_node in children: if child_node.isOutsideBuildArea(): group_node.setOutsideBuildArea(True) break # Apply results of the check to all children of the group: for child_node in children: child_node.setOutsideBuildArea(group_node.isOutsideBuildArea()) def checkBoundsAndUpdate(self, node: CuraSceneNode, bounds: Optional[AxisAlignedBox] = None) -> None: """Update the outsideBuildArea of a single node, given bounds or current build volume :param node: single node :param bounds: bounds or current build volume """ if not isinstance(node, CuraSceneNode) or self._global_container_stack is None: return if bounds is None: build_volume_bounding_box = self.getBoundingBox() if build_volume_bounding_box: # It's over 9000! build_volume_bounding_box = build_volume_bounding_box.set(bottom=-9001) else: # No bounding box. This is triggered when running Cura from command line with a model for the first time # In that situation there is a model, but no machine (and therefore no build volume. return else: build_volume_bounding_box = bounds if node.callDecoration("isSliceable") or node.callDecoration("isGroup"): if node.collidesWithBbox(build_volume_bounding_box): node.setOutsideBuildArea(True) return if node.collidesWithAreas(self.getDisallowedAreas()): node.setOutsideBuildArea(True) return # Mark the node as outside build volume if the set extruder is disabled extruder_position = node.callDecoration("getActiveExtruderPosition") try: if not self._global_container_stack.extruderList[int(extruder_position)].isEnabled: node.setOutsideBuildArea(True) return except IndexError: # If the extruder doesn't exist, also mark it as unprintable. node.setOutsideBuildArea(True) return node.setOutsideBuildArea(False) def _buildGridMesh(self, min_w: float, max_w: float, min_h: float, max_h: float, min_d: float, max_d:float, z_fight_distance: float) -> MeshData: mb = MeshBuilder() if self._shape != "elliptic": # Build plate grid mesh mb.addQuad( Vector(min_w, min_h - z_fight_distance, min_d), Vector(max_w, min_h - z_fight_distance, min_d), Vector(max_w, min_h - z_fight_distance, max_d), Vector(min_w, min_h - z_fight_distance, max_d) ) for n in range(0, 6): v = mb.getVertex(n) mb.setVertexUVCoordinates(n, v[0], v[2]) return mb.build() else: aspect = 1.0 scale_matrix = Matrix() if self._width != 0: # Scale circular meshes by aspect ratio if width != height aspect = self._depth / self._width scale_matrix.compose(scale=Vector(1, 1, aspect)) mb.addVertex(0, min_h - z_fight_distance, 0) mb.addArc(max_w, Vector.Unit_Y, center=Vector(0, min_h - z_fight_distance, 0)) sections = mb.getVertexCount() - 1 # Center point is not an arc section indices = [] for n in range(0, sections - 1): indices.append([0, n + 2, n + 1]) mb.addIndices(numpy.asarray(indices, dtype=numpy.int32)) mb.calculateNormals() for n in range(0, mb.getVertexCount()): v = mb.getVertex(n) mb.setVertexUVCoordinates(n, v[0], v[2] * aspect) return mb.build().getTransformed(scale_matrix) def _buildMesh(self, min_w: float, max_w: float, min_h: float, max_h: float, min_d: float, max_d:float, z_fight_distance: float) -> MeshData: if self._shape != "elliptic": # Outline 'cube' of the build volume mb = MeshBuilder() mb.addLine(Vector(min_w, min_h, min_d), Vector(max_w, min_h, min_d), color = self._volume_outline_color) mb.addLine(Vector(min_w, min_h, min_d), Vector(min_w, max_h, min_d), color = self._volume_outline_color) mb.addLine(Vector(min_w, max_h, min_d), Vector(max_w, max_h, min_d), color = self._volume_outline_color) mb.addLine(Vector(max_w, min_h, min_d), Vector(max_w, max_h, min_d), color = self._volume_outline_color) mb.addLine(Vector(min_w, min_h, max_d), Vector(max_w, min_h, max_d), color = self._volume_outline_color) mb.addLine(Vector(min_w, min_h, max_d), Vector(min_w, max_h, max_d), color = self._volume_outline_color) mb.addLine(Vector(min_w, max_h, max_d), Vector(max_w, max_h, max_d), color = self._volume_outline_color) mb.addLine(Vector(max_w, min_h, max_d), Vector(max_w, max_h, max_d), color = self._volume_outline_color) mb.addLine(Vector(min_w, min_h, min_d), Vector(min_w, min_h, max_d), color = self._volume_outline_color) mb.addLine(Vector(max_w, min_h, min_d), Vector(max_w, min_h, max_d), color = self._volume_outline_color) mb.addLine(Vector(min_w, max_h, min_d), Vector(min_w, max_h, max_d), color = self._volume_outline_color) mb.addLine(Vector(max_w, max_h, min_d), Vector(max_w, max_h, max_d), color = self._volume_outline_color) return mb.build() else: # Bottom and top 'ellipse' of the build volume scale_matrix = Matrix() if self._width != 0: # Scale circular meshes by aspect ratio if width != height aspect = self._depth / self._width scale_matrix.compose(scale = Vector(1, 1, aspect)) mb = MeshBuilder() mb.addArc(max_w, Vector.Unit_Y, center = (0, min_h - z_fight_distance, 0), color = self._volume_outline_color) mb.addArc(max_w, Vector.Unit_Y, center = (0, max_h, 0), color = self._volume_outline_color) return mb.build().getTransformed(scale_matrix) def _buildOriginMesh(self, origin: Vector) -> MeshData: mb = MeshBuilder() mb.addCube( width=self._origin_line_length, height=self._origin_line_width, depth=self._origin_line_width, center=origin + Vector(self._origin_line_length / 2, 0, 0), color=self._x_axis_color ) mb.addCube( width=self._origin_line_width, height=self._origin_line_length, depth=self._origin_line_width, center=origin + Vector(0, self._origin_line_length / 2, 0), color=self._y_axis_color ) mb.addCube( width=self._origin_line_width, height=self._origin_line_width, depth=self._origin_line_length, center=origin - Vector(0, 0, self._origin_line_length / 2), color=self._z_axis_color ) return mb.build() def _updateColors(self): theme = self._application.getTheme() if theme is None: return self._volume_outline_color = Color(*theme.getColor("volume_outline").getRgb()) self._x_axis_color = Color(*theme.getColor("x_axis").getRgb()) self._y_axis_color = Color(*theme.getColor("y_axis").getRgb()) self._z_axis_color = Color(*theme.getColor("z_axis").getRgb()) self._disallowed_area_color = Color(*theme.getColor("disallowed_area").getRgb()) self._error_area_color = Color(*theme.getColor("error_area").getRgb()) def _buildErrorMesh(self, min_w: float, max_w: float, min_h: float, max_h: float, min_d: float, max_d: float, disallowed_area_height: float) -> Optional[MeshData]: if not self._error_areas: return None mb = MeshBuilder() for error_area in self._error_areas: color = self._error_area_color points = error_area.getPoints() first = Vector(self._clamp(points[0][0], min_w, max_w), disallowed_area_height, self._clamp(points[0][1], min_d, max_d)) previous_point = Vector(self._clamp(points[0][0], min_w, max_w), disallowed_area_height, self._clamp(points[0][1], min_d, max_d)) for point in points: new_point = Vector(self._clamp(point[0], min_w, max_w), disallowed_area_height, self._clamp(point[1], min_d, max_d)) mb.addFace(first, previous_point, new_point, color=color) previous_point = new_point return mb.build() def _buildDisallowedAreaMesh(self, min_w: float, max_w: float, min_h: float, max_h: float, min_d: float, max_d: float, disallowed_area_height: float) -> Optional[MeshData]: if not self._disallowed_areas: return None bounding_box = Polygon(numpy.array([[min_w, min_d], [min_w, max_d], [max_w, max_d], [max_w, min_d]], numpy.float32)) mb = MeshBuilder() color = self._disallowed_area_color for polygon in self._disallowed_areas: intersection = polygon.intersectionConvexHulls(bounding_box) points = numpy.flipud(intersection.getPoints()) if len(points) < 3: continue first = Vector(points[0][0], disallowed_area_height, points[0][1]) previous_point = Vector(points[1][0], disallowed_area_height, points[1][1]) for point in points[2:]: new_point = Vector(point[0], disallowed_area_height, point[1]) mb.addFace(first, previous_point, new_point, color=color) previous_point = new_point # Find the largest disallowed area to exclude it from the maximum scale bounds. # This is a very nasty hack. This pretty much only works for UM machines. # This disallowed area_size needs a -lot- of rework at some point in the future: TODO if numpy.min(points[:, 1]) >= 0: # This filters out all areas that have points to the left of the centre. This is done to filter the skirt area. size = abs(numpy.max(points[:, 1]) - numpy.min(points[:, 1])) else: size = 0 self._disallowed_area_size = max(size, self._disallowed_area_size) return mb.build() def _updateScaleFactor(self) -> None: if not self._global_container_stack: return scale_xy = 100.0 / max(100.0, self._global_container_stack.getProperty("material_shrinkage_percentage_xy", "value")) scale_z = 100.0 / max(100.0, self._global_container_stack.getProperty("material_shrinkage_percentage_z" , "value")) self._scale_vector = Vector(scale_xy, scale_xy, scale_z) def rebuild(self) -> None: """Recalculates the build volume & disallowed areas.""" if not self._width or not self._height or not self._depth: return if not self._engine_ready: return if not self._global_container_stack: return if not self._volume_outline_color: self._updateColors() min_w = -self._width / 2 max_w = self._width / 2 min_h = 0.0 max_h = self._height min_d = -self._depth / 2 max_d = self._depth / 2 z_fight_distance = 0.2 # Distance between buildplate and disallowed area meshes to prevent z-fighting self._grid_mesh = self._buildGridMesh(min_w, max_w, min_h, max_h, min_d, max_d, z_fight_distance) self.setMeshData(self._buildMesh(min_w, max_w, min_h, max_h, min_d, max_d, z_fight_distance)) # Indication of the machine origin if self._global_container_stack.getProperty("machine_center_is_zero", "value"): origin = (Vector(min_w, min_h, min_d) + Vector(max_w, min_h, max_d)) / 2 else: origin = Vector(min_w, min_h, max_d) self._origin_mesh = self._buildOriginMesh(origin) disallowed_area_height = 0.1 self._disallowed_area_size = 0. self._disallowed_area_mesh = self._buildDisallowedAreaMesh(min_w, max_w, min_h, max_h, min_d, max_d, disallowed_area_height) self._error_mesh = self._buildErrorMesh(min_w, max_w, min_h, max_h, min_d, max_d, disallowed_area_height) self._updateScaleFactor() self._volume_aabb = AxisAlignedBox( minimum = Vector(min_w, min_h - 1.0, min_d), maximum = Vector(max_w, max_h - self._raft_thickness - self._extra_z_clearance, max_d) ) bed_adhesion_size = self.getEdgeDisallowedSize() # As this works better for UM machines, we only add the disallowed_area_size for the z direction. # This is probably wrong in all other cases. TODO! # The +1 and -1 is added as there is always a bit of extra room required to work properly. scale_to_max_bounds = AxisAlignedBox( minimum = Vector(min_w + bed_adhesion_size + 1, min_h, min_d + self._disallowed_area_size - bed_adhesion_size + 1), maximum = Vector(max_w - bed_adhesion_size - 1, max_h - self._raft_thickness - self._extra_z_clearance, max_d - self._disallowed_area_size + bed_adhesion_size - 1) ) self._application.getController().getScene()._maximum_bounds = scale_to_max_bounds # type: ignore self.updateNodeBoundaryCheck() def getBoundingBox(self) -> Optional[AxisAlignedBox]: return self._volume_aabb def getRaftThickness(self) -> float: return self._raft_thickness def _updateRaftThickness(self) -> None: if not self._global_container_stack: return old_raft_thickness = self._raft_thickness if self._global_container_stack.extruderList: # This might be called before the extruder stacks have initialised, in which case getting the adhesion_type fails self._adhesion_type = self._global_container_stack.getProperty("adhesion_type", "value") self._raft_thickness = 0.0 if self._adhesion_type == "raft": self._raft_thickness = ( self._global_container_stack.getProperty("raft_base_thickness", "value") + self._global_container_stack.getProperty("raft_interface_layers", "value") * self._global_container_stack.getProperty("raft_interface_thickness", "value") + self._global_container_stack.getProperty("raft_surface_layers", "value") * self._global_container_stack.getProperty("raft_surface_thickness", "value") + self._global_container_stack.getProperty("raft_airgap", "value") - self._global_container_stack.getProperty("layer_0_z_overlap", "value")) # Rounding errors do not matter, we check if raft_thickness has changed at all if old_raft_thickness != self._raft_thickness: self.setPosition(Vector(0, -self._raft_thickness, 0), SceneNode.TransformSpace.World) self.raftThicknessChanged.emit() def _calculateExtraZClearance(self, extruders: List["ContainerStack"]) -> float: if not self._global_container_stack: return 0 extra_z = 0.0 for extruder in extruders: if extruder.getProperty("retraction_hop_enabled", "value"): retraction_hop = extruder.getProperty("retraction_hop", "value") if extra_z is None or retraction_hop > extra_z: extra_z = retraction_hop return extra_z def _onStackChanged(self): self._stack_change_timer.start() def _onStackChangeTimerFinished(self) -> None: """Update the build volume visualization""" if self._global_container_stack: self._global_container_stack.propertyChanged.disconnect(self._onSettingPropertyChanged) extruders = ExtruderManager.getInstance().getActiveExtruderStacks() for extruder in extruders: extruder.propertyChanged.disconnect(self._onSettingPropertyChanged) self._global_container_stack = self._application.getGlobalContainerStack() if self._global_container_stack: self._global_container_stack.propertyChanged.connect(self._onSettingPropertyChanged) extruders = ExtruderManager.getInstance().getActiveExtruderStacks() for extruder in extruders: extruder.propertyChanged.connect(self._onSettingPropertyChanged) self._width = self._global_container_stack.getProperty("machine_width", "value") machine_height = self._global_container_stack.getProperty("machine_height", "value") if self._global_container_stack.getProperty("print_sequence", "value") == "one_at_a_time" and self._root_printable_object_count > 1: new_height = min(self._global_container_stack.getProperty("gantry_height", "value") * self._scale_vector.z, machine_height) if self._height > new_height: self._build_volume_message.show() elif self._height < new_height: self._build_volume_message.hide() self._height = new_height else: self._height = self._global_container_stack.getProperty("machine_height", "value") self._build_volume_message.hide() self._depth = self._global_container_stack.getProperty("machine_depth", "value") self._shape = self._global_container_stack.getProperty("machine_shape", "value") self._updateDisallowedAreas() self._updateRaftThickness() self._extra_z_clearance = self._calculateExtraZClearance(ExtruderManager.getInstance().getUsedExtruderStacks()) if self._engine_ready: self.rebuild() camera = Application.getInstance().getController().getCameraTool() if camera: diagonal = self.getDiagonalSize() if diagonal > 1: # You can zoom out up to 5 times the diagonal. This gives some space around the volume. camera.setZoomRange(min = 0.1, max = diagonal * 5) # type: ignore def _onEngineCreated(self) -> None: self._engine_ready = True self.rebuild() def _onSettingChangeTimerFinished(self) -> None: if not self._global_container_stack: return rebuild_me = False update_disallowed_areas = False update_raft_thickness = False update_extra_z_clearance = True for setting_key in self._changed_settings_since_last_rebuild: if setting_key in ["print_sequence", "support_mesh", "infill_mesh", "cutting_mesh", "anti_overhang_mesh"]: self._updateRootPrintableObjectCount() if setting_key == "print_sequence": machine_height = self._global_container_stack.getProperty("machine_height", "value") if self._application.getGlobalContainerStack().getProperty("print_sequence", "value") == "one_at_a_time" and self._root_printable_object_count > 1: new_height = min( self._global_container_stack.getProperty("gantry_height", "value") * self._scale_vector.z, machine_height) if self._height > new_height: self._build_volume_message.show() elif self._height < new_height: self._build_volume_message.hide() self._height = new_height else: self._height = self._global_container_stack.getProperty("machine_height", "value") * self._scale_vector.z self._build_volume_message.hide() update_disallowed_areas = True # sometimes the machine size or shape settings are adjusted on the active machine, we should reflect this if setting_key in self._machine_settings or setting_key in self._material_size_settings: self._updateMachineSizeProperties() update_extra_z_clearance = True update_disallowed_areas = True if setting_key in self._disallowed_area_settings: update_disallowed_areas = True if setting_key in self._raft_settings: update_raft_thickness = True if setting_key in self._extra_z_settings: update_extra_z_clearance = True if setting_key in self._limit_to_extruder_settings: update_disallowed_areas = True rebuild_me = update_extra_z_clearance or update_disallowed_areas or update_raft_thickness # We only want to update all of them once. if update_disallowed_areas: self._updateDisallowedAreas() if update_raft_thickness: self._updateRaftThickness() if update_extra_z_clearance: self._extra_z_clearance = self._calculateExtraZClearance(ExtruderManager.getInstance().getUsedExtruderStacks()) if rebuild_me: self.rebuild() # We just did a rebuild, reset the list. self._changed_settings_since_last_rebuild = [] def _onSettingPropertyChanged(self, setting_key: str, property_name: str) -> None: if property_name != "value": return if setting_key not in self._changed_settings_since_last_rebuild: self._changed_settings_since_last_rebuild.append(setting_key) self._setting_change_timer.start() def hasErrors(self) -> bool: return self._has_errors def _updateMachineSizeProperties(self) -> None: if not self._global_container_stack: return self._updateScaleFactor() self._height = self._global_container_stack.getProperty("machine_height", "value") * self._scale_vector.z self._width = self._global_container_stack.getProperty("machine_width", "value") self._depth = self._global_container_stack.getProperty("machine_depth", "value") self._shape = self._global_container_stack.getProperty("machine_shape", "value") def _updateDisallowedAreasAndRebuild(self): """Calls :py:meth:`cura.BuildVolume._updateDisallowedAreas` and makes sure the changes appear in the scene. This is required for a signal to trigger the update in one go. The :py:meth:`cura.BuildVolume._updateDisallowedAreas` method itself shouldn't call :py:meth:`cura.BuildVolume.rebuild`, since there may be other changes before it needs to be rebuilt, which would hit performance. """ self._updateDisallowedAreas() self._updateRaftThickness() self._extra_z_clearance = self._calculateExtraZClearance(ExtruderManager.getInstance().getUsedExtruderStacks()) self.rebuild() def _updateDisallowedAreas(self) -> None: if not self._global_container_stack: return self._error_areas = [] used_extruders = ExtruderManager.getInstance().getUsedExtruderStacks() self._edge_disallowed_size = None # Force a recalculation disallowed_border_size = self.getEdgeDisallowedSize() result_areas = self._computeDisallowedAreasStatic(disallowed_border_size, used_extruders) # Normal machine disallowed areas can always be added. prime_areas = self._computeDisallowedAreasPrimeBlob(disallowed_border_size, used_extruders) result_areas_no_brim = self._computeDisallowedAreasStatic(0, used_extruders) # Where the priming is not allowed to happen. This is not added to the result, just for collision checking. # Check if prime positions intersect with disallowed areas. for extruder in used_extruders: extruder_id = extruder.getId() result_areas[extruder_id].extend(prime_areas[extruder_id]) result_areas_no_brim[extruder_id].extend(prime_areas[extruder_id]) nozzle_disallowed_areas = extruder.getProperty("nozzle_disallowed_areas", "value") for area in nozzle_disallowed_areas: polygon = Polygon(numpy.array(area, numpy.float32)) polygon_disallowed_border = polygon.getMinkowskiHull(Polygon.approximatedCircle(disallowed_border_size)) result_areas[extruder_id].append(polygon_disallowed_border) # Don't perform the offset on these. result_areas_no_brim[extruder_id].append(polygon) # No brim # Add prime tower location as disallowed area. if len([x for x in used_extruders if x.isEnabled]) > 1: # No prime tower if only one extruder is enabled prime_tower_collision = False prime_tower_areas = self._computeDisallowedAreasPrinted(used_extruders) for extruder_id in prime_tower_areas: for area_index, prime_tower_area in enumerate(prime_tower_areas[extruder_id]): for area in result_areas_no_brim[extruder_id]: if prime_tower_area.intersectsPolygon(area) is not None: prime_tower_collision = True break if prime_tower_collision: # Already found a collision. break if not prime_tower_collision: result_areas[extruder_id].extend(prime_tower_areas[extruder_id]) result_areas_no_brim[extruder_id].extend(prime_tower_areas[extruder_id]) else: self._error_areas.extend(prime_tower_areas[extruder_id]) self._has_errors = len(self._error_areas) > 0 self._disallowed_areas = [] for extruder_id in result_areas: self._disallowed_areas.extend(result_areas[extruder_id]) self._disallowed_areas_no_brim = [] for extruder_id in result_areas_no_brim: self._disallowed_areas_no_brim.extend(result_areas_no_brim[extruder_id]) def _computeDisallowedAreasPrinted(self, used_extruders): """Computes the disallowed areas for objects that are printed with print features. This means that the brim, travel avoidance and such will be applied to these features. :return: A dictionary with for each used extruder ID the disallowed areas where that extruder may not print. """ result = {} skirt_brim_extruder: ExtruderStack = None skirt_brim_extruder_nr = self._global_container_stack.getProperty("skirt_brim_extruder_nr", "value") for extruder in used_extruders: if skirt_brim_extruder_nr == -1: skirt_brim_extruder = used_extruders[0] # The prime tower brim is always printed with the first extruder elif int(extruder.getProperty("extruder_nr", "value")) == int(skirt_brim_extruder_nr): skirt_brim_extruder = extruder result[extruder.getId()] = [] # Currently, the only normally printed object is the prime tower. if self._global_container_stack.getProperty("prime_tower_enable", "value"): prime_tower_size = self._global_container_stack.getProperty("prime_tower_size", "value") machine_width = self._global_container_stack.getProperty("machine_width", "value") machine_depth = self._global_container_stack.getProperty("machine_depth", "value") prime_tower_x = self._global_container_stack.getProperty("prime_tower_position_x", "value") prime_tower_y = - self._global_container_stack.getProperty("prime_tower_position_y", "value") prime_tower_brim_enable = self._global_container_stack.getProperty("prime_tower_brim_enable", "value") prime_tower_base_size = self._global_container_stack.getProperty("prime_tower_base_size", "value") prime_tower_base_height = self._global_container_stack.getProperty("prime_tower_base_height", "value") adhesion_type = self._global_container_stack.getProperty("adhesion_type", "value") if not self._global_container_stack.getProperty("machine_center_is_zero", "value"): prime_tower_x = prime_tower_x - machine_width / 2 #Offset by half machine_width and _depth to put the origin in the front-left. prime_tower_y = prime_tower_y + machine_depth / 2 radius = prime_tower_size / 2 delta_x = -radius delta_y = -radius if prime_tower_base_size > 0 and ((prime_tower_brim_enable and prime_tower_base_height > 0) or adhesion_type == "raft"): radius += prime_tower_base_size prime_tower_area = Polygon.approximatedCircle(radius, num_segments = 32) prime_tower_area = prime_tower_area.translate(prime_tower_x + delta_x, prime_tower_y + delta_y) prime_tower_area = prime_tower_area.getMinkowskiHull(Polygon.approximatedCircle(0)) for extruder in used_extruders: result[extruder.getId()].append(prime_tower_area) #The prime tower location is the same for each extruder, regardless of offset. return result def _computeDisallowedAreasPrimeBlob(self, border_size: float, used_extruders: List["ExtruderStack"]) -> Dict[str, List[Polygon]]: """Computes the disallowed areas for the prime blobs. These are special because they are not subject to things like brim or travel avoidance. They do get a dilute with the border size though because they may not intersect with brims and such of other objects. :param border_size: The size with which to offset the disallowed areas due to skirt, brim, travel avoid distance , etc. :param used_extruders: The extruder stacks to generate disallowed areas for. :return: A dictionary with for each used extruder ID the prime areas. """ result = {} # type: Dict[str, List[Polygon]] if not self._global_container_stack: return result machine_width = self._global_container_stack.getProperty("machine_width", "value") machine_depth = self._global_container_stack.getProperty("machine_depth", "value") for extruder in used_extruders: prime_blob_enabled = extruder.getProperty("prime_blob_enable", "value") prime_x = extruder.getProperty("extruder_prime_pos_x", "value") prime_y = -extruder.getProperty("extruder_prime_pos_y", "value") # Ignore extruder prime position if it is not set or if blob is disabled if (prime_x == 0 and prime_y == 0) or not prime_blob_enabled: result[extruder.getId()] = [] continue if not self._global_container_stack.getProperty("machine_center_is_zero", "value"): prime_x = prime_x - machine_width / 2 # Offset by half machine_width and _depth to put the origin in the front-left. prime_y = prime_y + machine_depth / 2 prime_polygon = Polygon.approximatedCircle(PRIME_CLEARANCE) prime_polygon = prime_polygon.getMinkowskiHull(Polygon.approximatedCircle(border_size)) prime_polygon = prime_polygon.translate(prime_x, prime_y) result[extruder.getId()] = [prime_polygon] return result def _computeDisallowedAreasStatic(self, border_size:float, used_extruders: List["ExtruderStack"]) -> Dict[str, List[Polygon]]: """Computes the disallowed areas that are statically placed in the machine. It computes different disallowed areas depending on the offset of the extruder. The resulting dictionary will therefore have an entry for each extruder that is used. :param border_size: The size with which to offset the disallowed areas due to skirt, brim, travel avoid distance , etc. :param used_extruders: The extruder stacks to generate disallowed areas for. :return: A dictionary with for each used extruder ID the disallowed areas where that extruder may not print. """ # Convert disallowed areas to polygons and dilate them. machine_disallowed_polygons = [] if self._global_container_stack is None: return {} for area in self._global_container_stack.getProperty("machine_disallowed_areas", "value"): if len(area) == 0: continue # Numpy doesn't deal well with 0-length arrays, since it can't determine the dimensionality of them. polygon = Polygon(numpy.array(area, numpy.float32)) polygon = polygon.getMinkowskiHull(Polygon.approximatedCircle(border_size)) machine_disallowed_polygons.append(polygon) # For certain machines we don't need to compute disallowed areas for each nozzle. # So we check here and only do the nozzle offsetting if needed. nozzle_offsetting_for_disallowed_areas = self._global_container_stack.getMetaDataEntry( "nozzle_offsetting_for_disallowed_areas", True) result = {} # type: Dict[str, List[Polygon]] for extruder in used_extruders: extruder_id = extruder.getId() offset_x = extruder.getProperty("machine_nozzle_offset_x", "value") if offset_x is None: offset_x = 0 offset_y = extruder.getProperty("machine_nozzle_offset_y", "value") if offset_y is None: offset_y = 0 offset_y = -offset_y # Y direction of g-code is the inverse of Y direction of Cura's scene space. result[extruder_id] = [] for polygon in machine_disallowed_polygons: result[extruder_id].append(polygon.translate(offset_x, offset_y)) # Compensate for the nozzle offset of this extruder. # Add the border around the edge of the build volume. left_unreachable_border = 0 right_unreachable_border = 0 top_unreachable_border = 0 bottom_unreachable_border = 0 # Only do nozzle offsetting if needed if nozzle_offsetting_for_disallowed_areas: # The build volume is defined as the union of the area that all extruders can reach, so we need to know # the relative offset to all extruders. for other_extruder in ExtruderManager.getInstance().getActiveExtruderStacks(): other_offset_x = other_extruder.getProperty("machine_nozzle_offset_x", "value") if other_offset_x is None: other_offset_x = 0 other_offset_y = other_extruder.getProperty("machine_nozzle_offset_y", "value") if other_offset_y is None: other_offset_y = 0 other_offset_y = -other_offset_y left_unreachable_border = min(left_unreachable_border, other_offset_x - offset_x) right_unreachable_border = max(right_unreachable_border, other_offset_x - offset_x) top_unreachable_border = min(top_unreachable_border, other_offset_y - offset_y) bottom_unreachable_border = max(bottom_unreachable_border, other_offset_y - offset_y) half_machine_width = self._global_container_stack.getProperty("machine_width", "value") / 2 half_machine_depth = self._global_container_stack.getProperty("machine_depth", "value") / 2 # We need at a minimum a very small border around the edge so that models can't go off the build plate border_size = max(border_size, 0.1) if self._shape != "elliptic": if border_size - left_unreachable_border > 0: result[extruder_id].append(Polygon(numpy.array([ [-half_machine_width, -half_machine_depth], [-half_machine_width, half_machine_depth], [-half_machine_width + border_size - left_unreachable_border, half_machine_depth - border_size - bottom_unreachable_border], [-half_machine_width + border_size - left_unreachable_border, -half_machine_depth + border_size - top_unreachable_border] ], numpy.float32))) if border_size + right_unreachable_border > 0: result[extruder_id].append(Polygon(numpy.array([ [half_machine_width, half_machine_depth], [half_machine_width, -half_machine_depth], [half_machine_width - border_size - right_unreachable_border, -half_machine_depth + border_size - top_unreachable_border], [half_machine_width - border_size - right_unreachable_border, half_machine_depth - border_size - bottom_unreachable_border] ], numpy.float32))) if border_size + bottom_unreachable_border > 0: result[extruder_id].append(Polygon(numpy.array([ [-half_machine_width, half_machine_depth], [half_machine_width, half_machine_depth], [half_machine_width - border_size - right_unreachable_border, half_machine_depth - border_size - bottom_unreachable_border], [-half_machine_width + border_size - left_unreachable_border, half_machine_depth - border_size - bottom_unreachable_border] ], numpy.float32))) if border_size - top_unreachable_border > 0: result[extruder_id].append(Polygon(numpy.array([ [half_machine_width, -half_machine_depth], [-half_machine_width, -half_machine_depth], [-half_machine_width + border_size - left_unreachable_border, -half_machine_depth + border_size - top_unreachable_border], [half_machine_width - border_size - right_unreachable_border, -half_machine_depth + border_size - top_unreachable_border] ], numpy.float32))) else: sections = 32 arc_vertex = [0, half_machine_depth - border_size] for i in range(0, sections): quadrant = math.floor(4 * i / sections) vertices = [] if quadrant == 0: vertices.append([-half_machine_width, half_machine_depth]) elif quadrant == 1: vertices.append([-half_machine_width, -half_machine_depth]) elif quadrant == 2: vertices.append([half_machine_width, -half_machine_depth]) elif quadrant == 3: vertices.append([half_machine_width, half_machine_depth]) vertices.append(arc_vertex) angle = 2 * math.pi * (i + 1) / sections arc_vertex = [-(half_machine_width - border_size) * math.sin(angle), (half_machine_depth - border_size) * math.cos(angle)] vertices.append(arc_vertex) result[extruder_id].append(Polygon(numpy.array(vertices, numpy.float32))) if border_size > 0: result[extruder_id].append(Polygon(numpy.array([ [-half_machine_width, -half_machine_depth], [-half_machine_width, half_machine_depth], [-half_machine_width + border_size, 0] ], numpy.float32))) result[extruder_id].append(Polygon(numpy.array([ [-half_machine_width, half_machine_depth], [ half_machine_width, half_machine_depth], [ 0, half_machine_depth - border_size] ], numpy.float32))) result[extruder_id].append(Polygon(numpy.array([ [ half_machine_width, half_machine_depth], [ half_machine_width, -half_machine_depth], [ half_machine_width - border_size, 0] ], numpy.float32))) result[extruder_id].append(Polygon(numpy.array([ [ half_machine_width, -half_machine_depth], [-half_machine_width, -half_machine_depth], [ 0, -half_machine_depth + border_size] ], numpy.float32))) return result def _getSettingFromAllExtruders(self, setting_key: str) -> List[Any]: """Private convenience function to get a setting from every extruder. For single extrusion machines, this gets the setting from the global stack. :return: A sequence of setting values, one for each extruder. """ all_values = ExtruderManager.getInstance().getAllExtruderSettings(setting_key, "value") all_types = ExtruderManager.getInstance().getAllExtruderSettings(setting_key, "type") for i, (setting_value, setting_type) in enumerate(zip(all_values, all_types)): if not setting_value and setting_type in ["int", "float"]: all_values[i] = 0 return all_values def _calculateBedAdhesionSize(self, used_extruders): """Get the bed adhesion size for the global container stack and used extruders :param adhesion_override: override adhesion type. Use None to use the global stack default, "none" for no adhesion, "brim" for brim etc. """ if self._global_container_stack is None: return None container_stack = self._global_container_stack adhesion_type = container_stack.getProperty("adhesion_type", "value") if adhesion_type == "raft": bed_adhesion_size = self._global_container_stack.getProperty("raft_margin", "value") # Should refer to the raft extruder if set. else: # raft, brim or skirt. Those last two are handled by CuraEngine. bed_adhesion_size = 0 max_length_available = 0.5 * min( self._global_container_stack.getProperty("machine_width", "value"), self._global_container_stack.getProperty("machine_depth", "value") ) bed_adhesion_size = min(bed_adhesion_size, max_length_available) return bed_adhesion_size def _calculateFarthestShieldDistance(self, container_stack): farthest_shield_distance = 0 if container_stack.getProperty("draft_shield_enabled", "value"): farthest_shield_distance = max(farthest_shield_distance, container_stack.getProperty("draft_shield_dist", "value")) if container_stack.getProperty("ooze_shield_enabled", "value"): farthest_shield_distance = max(farthest_shield_distance,container_stack.getProperty("ooze_shield_dist", "value")) return farthest_shield_distance def _calculateSupportExpansion(self, container_stack): support_expansion = 0 support_enabled = self._global_container_stack.getProperty("support_enable", "value") support_offset = self._global_container_stack.getProperty("support_offset", "value") if support_enabled and support_offset: support_expansion += support_offset return support_expansion def _calculateMoveFromWallRadius(self, used_extruders): move_from_wall_radius = 0 # Moves that start from outer wall. for stack in used_extruders: if stack.getProperty("travel_avoid_other_parts", "value"): move_from_wall_radius = max(move_from_wall_radius, stack.getProperty("travel_avoid_distance", "value")) infill_wipe_distance = stack.getProperty("infill_wipe_dist", "value") num_walls = stack.getProperty("wall_line_count", "value") if num_walls >= 1: # Infill wipes start from the infill, so subtract the total wall thickness from this. infill_wipe_distance -= stack.getProperty("wall_line_width_0", "value") if num_walls >= 2: infill_wipe_distance -= stack.getProperty("wall_line_width_x", "value") * (num_walls - 1) move_from_wall_radius = max(move_from_wall_radius, infill_wipe_distance) return move_from_wall_radius def getEdgeDisallowedSize(self): """Calculate the disallowed radius around the edge. This disallowed radius is to allow for space around the models that is not part of the collision radius, such as bed adhesion (skirt/brim/raft) and travel avoid distance. """ if not self._global_container_stack or not self._global_container_stack.extruderList: return 0 if self._edge_disallowed_size is not None: return self._edge_disallowed_size container_stack = self._global_container_stack used_extruders = ExtruderManager.getInstance().getUsedExtruderStacks() # If we are printing one at a time, we need to add the bed adhesion size to the disallowed areas of the objects if container_stack.getProperty("print_sequence", "value") == "one_at_a_time": return 0.1 bed_adhesion_size = self._calculateBedAdhesionSize(used_extruders) support_expansion = self._calculateSupportExpansion(self._global_container_stack) farthest_shield_distance = self._calculateFarthestShieldDistance(self._global_container_stack) move_from_wall_radius = self._calculateMoveFromWallRadius(used_extruders) # Now combine our different pieces of data to get the final border size. # Support expansion is added to the bed adhesion, since the bed adhesion goes around support. # Support expansion is added to farthest shield distance, since the shields go around support. self._edge_disallowed_size = max(move_from_wall_radius, support_expansion + farthest_shield_distance, support_expansion + bed_adhesion_size) return self._edge_disallowed_size def _clamp(self, value, min_value, max_value): return max(min(value, max_value), min_value) _machine_settings = ["machine_width", "machine_depth", "machine_height", "machine_shape", "machine_center_is_zero"] _skirt_settings = ["adhesion_type", "skirt_gap", "skirt_line_count", "skirt_brim_line_width", "brim_gap", "brim_width", "brim_line_count", "raft_margin", "draft_shield_enabled", "draft_shield_dist", "initial_layer_line_width_factor"] _raft_settings = ["adhesion_type", "raft_base_thickness", "raft_interface_layers", "raft_interface_thickness", "raft_surface_layers", "raft_surface_thickness", "raft_airgap", "layer_0_z_overlap"] _extra_z_settings = ["retraction_hop_enabled", "retraction_hop"] _prime_settings = ["extruder_prime_pos_x", "extruder_prime_pos_y", "prime_blob_enable"] _tower_settings = ["prime_tower_enable", "prime_tower_size", "prime_tower_position_x", "prime_tower_position_y", "prime_tower_brim_enable", "prime_tower_base_size", "prime_tower_base_height"] _ooze_shield_settings = ["ooze_shield_enabled", "ooze_shield_dist"] _distance_settings = ["infill_wipe_dist", "travel_avoid_distance", "support_offset", "support_enable", "travel_avoid_other_parts", "travel_avoid_supports", "wall_line_count", "wall_line_width_0", "wall_line_width_x"] _extruder_settings = ["support_enable", "support_bottom_enable", "support_roof_enable", "support_infill_extruder_nr", "support_extruder_nr_layer_0", "support_bottom_extruder_nr", "support_roof_extruder_nr", "brim_line_count", "skirt_brim_extruder_nr", "raft_base_extruder_nr", "raft_interface_extruder_nr", "raft_surface_extruder_nr", "adhesion_type"] #Settings that can affect which extruders are used. _limit_to_extruder_settings = ["wall_extruder_nr", "wall_0_extruder_nr", "wall_x_extruder_nr", "top_bottom_extruder_nr", "infill_extruder_nr", "support_infill_extruder_nr", "support_extruder_nr_layer_0", "support_bottom_extruder_nr", "support_roof_extruder_nr", "skirt_brim_extruder_nr", "raft_base_extruder_nr", "raft_interface_extruder_nr", "raft_surface_extruder_nr"] _material_size_settings = ["material_shrinkage_percentage", "material_shrinkage_percentage_xy", "material_shrinkage_percentage_z"] _disallowed_area_settings = _skirt_settings + _prime_settings + _tower_settings + _ooze_shield_settings + _distance_settings + _extruder_settings + _material_size_settings