Browse Source

Merge branch 'feature_arrange_cleanup' of github.com:Ultimaker/Cura

Jaime van Kessel 8 years ago
parent
commit
ecf905f580
6 changed files with 562 additions and 10 deletions
  1. 172 0
      cura/Arrange.py
  2. 111 10
      cura/CuraApplication.py
  3. 111 0
      cura/ShapeArray.py
  4. 17 0
      resources/qml/Actions.qml
  5. 3 0
      resources/qml/Cura.qml
  6. 148 0
      tests/TestArrange.py

+ 172 - 0
cura/Arrange.py

@@ -0,0 +1,172 @@
+from UM.Scene.Iterator.DepthFirstIterator import DepthFirstIterator
+from UM.Logger import Logger
+from cura.ShapeArray import ShapeArray
+
+from collections import namedtuple
+
+import numpy
+import copy
+
+
+##  Return object for  bestSpot
+LocationSuggestion = namedtuple("LocationSuggestion", ["x", "y", "penalty_points", "priority"])
+
+##  The Arrange classed is used together with ShapeArray. Use it to find
+#   good locations for objects that you try to put on a build place.
+#   Different priority schemes can be defined so it alters the behavior while using
+#   the same logic.
+class Arrange:
+    def __init__(self, x, y, offset_x, offset_y, scale=1):
+        self.shape = (y, x)
+        self._priority = numpy.zeros((x, y), dtype=numpy.int32)
+        self._priority_unique_values = []
+        self._occupied = numpy.zeros((x, y), dtype=numpy.int32)
+        self._scale = scale  # convert input coordinates to arrange coordinates
+        self._offset_x = offset_x
+        self._offset_y = offset_y
+
+    ##  Helper to create an Arranger instance
+    #
+    #   Either fill in scene_root and create will find all sliceable nodes by itself,
+    #   or use fixed_nodes to provide the nodes yourself.
+    #   \param scene_root   Root for finding all scene nodes
+    #   \param fixed_nodes  Scene nodes to be placed
+    @classmethod
+    def create(cls, scene_root = None, fixed_nodes = None, scale = 0.5):
+        arranger = Arrange(220, 220, 110, 110, scale = scale)
+        arranger.centerFirst()
+
+        if fixed_nodes is None:
+            fixed_nodes = []
+            for node_ in DepthFirstIterator(scene_root):
+                # Only count sliceable objects
+                if node_.callDecoration("isSliceable"):
+                    fixed_nodes.append(node_)
+        # place all objects fixed nodes
+        for fixed_node in fixed_nodes:
+            vertices = fixed_node.callDecoration("getConvexHull")
+            points = copy.deepcopy(vertices._points)
+            shape_arr = ShapeArray.fromPolygon(points, scale = scale)
+            arranger.place(0, 0, shape_arr)
+        return arranger
+
+    ##  Find placement for a node (using offset shape) and place it (using hull shape)
+    #   return the nodes that should be placed
+    #   \param node
+    #   \param offset_shape_arr ShapeArray with offset, used to find location
+    #   \param hull_shape_arr ShapeArray without offset, for placing the shape
+    #   \param count Number of objects
+    def findNodePlacements(self, node, offset_shape_arr, hull_shape_arr, count = 1, step = 1):
+        nodes = []
+        start_prio = 0
+        for i in range(count):
+            new_node = copy.deepcopy(node)
+
+            best_spot = self.bestSpot(
+                offset_shape_arr, start_prio = start_prio, step = step)
+            x, y = best_spot.x, best_spot.y
+            start_prio = best_spot.priority
+            transformation = new_node._transformation
+            if x is not None:  # We could find a place
+                transformation._data[0][3] = x
+                transformation._data[2][3] = y
+                self.place(x, y, hull_shape_arr)  # take place before the next one
+            else:
+                Logger.log("d", "Could not find spot!")
+                transformation._data[0][3] = 200
+                transformation._data[2][3] = 100 + i * 20
+
+            nodes.append(new_node)
+        return nodes
+
+    ##  Fill priority, center is best. lower value is better
+    def centerFirst(self):
+        # Distance x + distance y: creates diamond shape
+        #self._priority = numpy.fromfunction(
+        #    lambda i, j: abs(self._offset_x-i)+abs(self._offset_y-j), self.shape, dtype=numpy.int32)
+        # Square distance: creates a more round shape
+        self._priority = numpy.fromfunction(
+            lambda i, j: (self._offset_x - i) ** 2 + (self._offset_y - j) ** 2, self.shape, dtype=numpy.int32)
+        self._priority_unique_values = numpy.unique(self._priority)
+        self._priority_unique_values.sort()
+
+    ##  Fill priority, back is best. lower value is better
+    def backFirst(self):
+        self._priority = numpy.fromfunction(
+            lambda i, j: 10 * j + abs(self._offset_x - i), self.shape, dtype=numpy.int32)
+        self._priority_unique_values = numpy.unique(self._priority)
+        self._priority_unique_values.sort()
+
+    ##  Return the amount of "penalty points" for polygon, which is the sum of priority
+    #   999999 if occupied
+    #   \param x x-coordinate to check shape
+    #   \param y y-coordinate
+    #   \param shape_arr the ShapeArray object to place
+    def checkShape(self, x, y, shape_arr):
+        x = int(self._scale * x)
+        y = int(self._scale * y)
+        offset_x = x + self._offset_x + shape_arr.offset_x
+        offset_y = y + self._offset_y + shape_arr.offset_y
+        occupied_slice = self._occupied[
+            offset_y:offset_y + shape_arr.arr.shape[0],
+            offset_x:offset_x + shape_arr.arr.shape[1]]
+        try:
+            if numpy.any(occupied_slice[numpy.where(shape_arr.arr == 1)]):
+                return 999999
+        except IndexError:  # out of bounds if you try to place an object outside
+            return 999999
+        prio_slice = self._priority[
+            offset_y:offset_y + shape_arr.arr.shape[0],
+            offset_x:offset_x + shape_arr.arr.shape[1]]
+        return numpy.sum(prio_slice[numpy.where(shape_arr.arr == 1)])
+
+    ##  Find "best" spot for ShapeArray
+    #   Return namedtuple with properties x, y, penalty_points, priority
+    #   \param shape_arr ShapeArray
+    #   \param start_prio Start with this priority value (and skip the ones before)
+    #   \param step Slicing value, higher = more skips = faster but less accurate
+    def bestSpot(self, shape_arr, start_prio = 0, step = 1):
+        start_idx_list = numpy.where(self._priority_unique_values == start_prio)
+        if start_idx_list:
+            start_idx = start_idx_list[0][0]
+        else:
+            start_idx = 0
+        for prio in self._priority_unique_values[start_idx::step]:
+            tryout_idx = numpy.where(self._priority == prio)
+            for idx in range(len(tryout_idx[0])):
+                x = tryout_idx[0][idx]
+                y = tryout_idx[1][idx]
+                projected_x = x - self._offset_x
+                projected_y = y - self._offset_y
+
+                # array to "world" coordinates
+                penalty_points = self.checkShape(projected_x, projected_y, shape_arr)
+                if penalty_points != 999999:
+                    return LocationSuggestion(x = projected_x, y = projected_y, penalty_points = penalty_points, priority = prio)
+        return LocationSuggestion(x = None, y = None, penalty_points = None, priority = prio)  # No suitable location found :-(
+
+    ##  Place the object.
+    #   Marks the locations in self._occupied and self._priority
+    #   \param x x-coordinate
+    #   \param y y-coordinate
+    #   \param shape_arr ShapeArray object
+    def place(self, x, y, shape_arr):
+        x = int(self._scale * x)
+        y = int(self._scale * y)
+        offset_x = x + self._offset_x + shape_arr.offset_x
+        offset_y = y + self._offset_y + shape_arr.offset_y
+        shape_y, shape_x = self._occupied.shape
+
+        min_x = min(max(offset_x, 0), shape_x - 1)
+        min_y = min(max(offset_y, 0), shape_y - 1)
+        max_x = min(max(offset_x + shape_arr.arr.shape[1], 0), shape_x - 1)
+        max_y = min(max(offset_y + shape_arr.arr.shape[0], 0), shape_y - 1)
+        occupied_slice = self._occupied[min_y:max_y, min_x:max_x]
+        # we use a slice of shape because it can be out of bounds
+        occupied_slice[numpy.where(shape_arr.arr[
+            min_y - offset_y:max_y - offset_y, min_x - offset_x:max_x - offset_x] == 1)] = 1
+
+        # Set priority to low (= high number), so it won't get picked at trying out.
+        prio_slice = self._priority[min_y:max_y, min_x:max_x]
+        prio_slice[numpy.where(shape_arr.arr[
+            min_y - offset_y:max_y - offset_y, min_x - offset_x:max_x - offset_x] == 1)] = 999

+ 111 - 10
cura/CuraApplication.py

@@ -31,6 +31,9 @@ from UM.Operations.AddSceneNodeOperation import AddSceneNodeOperation
 from UM.Operations.RemoveSceneNodeOperation import RemoveSceneNodeOperation
 from UM.Operations.GroupedOperation import GroupedOperation
 from UM.Operations.SetTransformOperation import SetTransformOperation
+from cura.Arrange import Arrange
+from cura.ShapeArray import ShapeArray
+from cura.ConvexHullDecorator import ConvexHullDecorator
 from cura.SetParentOperation import SetParentOperation
 from cura.SliceableObjectDecorator import SliceableObjectDecorator
 from cura.BlockSlicingDecorator import BlockSlicingDecorator
@@ -838,22 +841,29 @@ class CuraApplication(QtApplication):
             op.push()
 
     ##  Create a number of copies of existing object.
+    #   \param object_id
+    #   \param count number of copies
+    #   \param min_offset minimum offset to other objects.
     @pyqtSlot("quint64", int)
-    def multiplyObject(self, object_id, count):
+    def multiplyObject(self, object_id, count, min_offset = 8):
         node = self.getController().getScene().findObject(object_id)
 
         if not node and object_id != 0:  # Workaround for tool handles overlapping the selected object
             node = Selection.getSelectedObject(0)
 
-        if node:
-            current_node = node
-            # Find the topmost group
-            while current_node.getParent() and current_node.getParent().callDecoration("isGroup"):
-                current_node = current_node.getParent()
+        # If object is part of a group, multiply group
+        current_node = node
+        while current_node.getParent() and current_node.getParent().callDecoration("isGroup"):
+            current_node = current_node.getParent()
+
+        root = self.getController().getScene().getRoot()
+        arranger = Arrange.create(scene_root = root)
+        offset_shape_arr, hull_shape_arr = ShapeArray.fromNode(current_node, min_offset = min_offset)
+        nodes = arranger.findNodePlacements(current_node, offset_shape_arr, hull_shape_arr, count = count)
 
+        if nodes:
             op = GroupedOperation()
-            for _ in range(count):
-                new_node = copy.deepcopy(current_node)
+            for new_node in nodes:
                 op.addOperation(AddSceneNodeOperation(new_node, current_node.getParent()))
             op.push()
 
@@ -973,6 +983,83 @@ class CuraApplication(QtApplication):
                 op.addOperation(SetTransformOperation(node, Vector(0, center_y, 0), Quaternion(), Vector(1, 1, 1)))
             op.push()
 
+    ##  Arrange all objects.
+    @pyqtSlot()
+    def arrangeAll(self):
+        nodes = []
+        for node in DepthFirstIterator(self.getController().getScene().getRoot()):
+            if type(node) is not SceneNode:
+                continue
+            if not node.getMeshData() and not node.callDecoration("isGroup"):
+                continue  # Node that doesnt have a mesh and is not a group.
+            if node.getParent() and node.getParent().callDecoration("isGroup"):
+                continue  # Grouped nodes don't need resetting as their parent (the group) is resetted)
+            if not node.isSelectable():
+                continue  # i.e. node with layer data
+            nodes.append(node)
+        self.arrange(nodes, fixed_nodes = [])
+
+    ##  Arrange Selection
+    @pyqtSlot()
+    def arrangeSelection(self):
+        nodes = Selection.getAllSelectedObjects()
+
+        # What nodes are on the build plate and are not being moved
+        fixed_nodes = []
+        for node in DepthFirstIterator(self.getController().getScene().getRoot()):
+            if type(node) is not SceneNode:
+                continue
+            if not node.getMeshData() and not node.callDecoration("isGroup"):
+                continue  # Node that doesnt have a mesh and is not a group.
+            if node.getParent() and node.getParent().callDecoration("isGroup"):
+                continue  # Grouped nodes don't need resetting as their parent (the group) is resetted)
+            if not node.isSelectable():
+                continue  # i.e. node with layer data
+            if node in nodes:  # exclude selected node from fixed_nodes
+                continue
+            fixed_nodes.append(node)
+        self.arrange(nodes, fixed_nodes)
+
+    ##  Arrange the nodes, given fixed nodes
+    #   \param nodes nodes that we have to place
+    #   \param fixed_nodes nodes that are placed in the arranger before finding spots for nodes
+    def arrange(self, nodes, fixed_nodes):
+        min_offset = 8
+
+        arranger = Arrange.create(fixed_nodes = fixed_nodes)
+
+        # Collect nodes to be placed
+        nodes_arr = []  # fill with (size, node, offset_shape_arr, hull_shape_arr)
+        for node in nodes:
+            offset_shape_arr, hull_shape_arr = ShapeArray.fromNode(node, min_offset = min_offset)
+            nodes_arr.append((offset_shape_arr.arr.shape[0] * offset_shape_arr.arr.shape[1], node, offset_shape_arr, hull_shape_arr))
+
+        # Sort nodes biggest area first
+        nodes_arr.sort(key = lambda item: item[0])
+        nodes_arr.reverse()
+
+        # Place nodes one at a time
+        start_prio = 0
+        for size, node, offset_shape_arr, hull_shape_arr in nodes_arr:
+            # For performance reasons, we assume that when a location does not fit,
+            # it will also not fit for the next object (while what can be untrue).
+            # We also skip possibilities by slicing through the possibilities (step = 10)
+            best_spot = arranger.bestSpot(offset_shape_arr, start_prio = start_prio, step = 10)
+            x, y = best_spot.x, best_spot.y
+            start_prio = best_spot.priority
+            if x is not None:  # We could find a place
+                arranger.place(x, y, hull_shape_arr)  # take place before the next one
+
+                node.removeDecorator(ZOffsetDecorator.ZOffsetDecorator)
+                if node.getBoundingBox():
+                    center_y = node.getWorldPosition().y - node.getBoundingBox().bottom
+                else:
+                    center_y = 0
+
+                op = GroupedOperation()
+                op.addOperation(SetTransformOperation(node, Vector(x, center_y, y)))
+                op.push()
+
     ##  Reload all mesh data on the screen from file.
     @pyqtSlot()
     def reloadAll(self):
@@ -1209,6 +1296,10 @@ class CuraApplication(QtApplication):
         filename = job.getFileName()
         self._currently_loading_files.remove(filename)
 
+        root = self.getController().getScene().getRoot()
+        arranger = Arrange.create(scene_root = root)
+        min_offset = 8
+
         for node in nodes:
             node.setSelectable(True)
             node.setName(os.path.basename(filename))
@@ -1229,8 +1320,18 @@ class CuraApplication(QtApplication):
 
             scene = self.getController().getScene()
 
-            op = AddSceneNodeOperation(node, scene.getRoot())
-            op.push()
+            # If there is no convex hull for the node, start calculating it and continue.
+            if not node.getDecorator(ConvexHullDecorator):
+                node.addDecorator(ConvexHullDecorator())
+
+            # find node location
+            offset_shape_arr, hull_shape_arr = ShapeArray.fromNode(node, min_offset = min_offset)
+            # step is for skipping tests to make it a lot faster. it also makes the outcome somewhat rougher
+            nodes = arranger.findNodePlacements(node, offset_shape_arr, hull_shape_arr, count = 1, step = 10)
+
+            for new_node in nodes:
+                op = AddSceneNodeOperation(new_node, scene.getRoot())
+                op.push()
 
             scene.sceneChanged.emit(node)
 

+ 111 - 0
cura/ShapeArray.py

@@ -0,0 +1,111 @@
+import numpy
+import copy
+
+from UM.Math.Polygon import Polygon
+
+
+##  Polygon representation as an array for use with Arrange
+class ShapeArray:
+    def __init__(self, arr, offset_x, offset_y, scale = 1):
+        self.arr = arr
+        self.offset_x = offset_x
+        self.offset_y = offset_y
+        self.scale = scale
+
+    ##  Instantiate from a bunch of vertices
+    #   \param vertices
+    #   \param scale  scale the coordinates
+    @classmethod
+    def fromPolygon(cls, vertices, scale = 1):
+        # scale
+        vertices = vertices * scale
+        # flip y, x -> x, y
+        flip_vertices = numpy.zeros((vertices.shape))
+        flip_vertices[:, 0] = vertices[:, 1]
+        flip_vertices[:, 1] = vertices[:, 0]
+        flip_vertices = flip_vertices[::-1]
+        # offset, we want that all coordinates have positive values
+        offset_y = int(numpy.amin(flip_vertices[:, 0]))
+        offset_x = int(numpy.amin(flip_vertices[:, 1]))
+        flip_vertices[:, 0] = numpy.add(flip_vertices[:, 0], -offset_y)
+        flip_vertices[:, 1] = numpy.add(flip_vertices[:, 1], -offset_x)
+        shape = [int(numpy.amax(flip_vertices[:, 0])), int(numpy.amax(flip_vertices[:, 1]))]
+        arr = cls.arrayFromPolygon(shape, flip_vertices)
+        return cls(arr, offset_x, offset_y)
+
+    ##  Instantiate an offset and hull ShapeArray from a scene node.
+    #   \param node source node where the convex hull must be present
+    #   \param min_offset offset for the offset ShapeArray
+    #   \param scale scale the coordinates
+    @classmethod
+    def fromNode(cls, node, min_offset, scale = 0.5):
+        transform = node._transformation
+        transform_x = transform._data[0][3]
+        transform_y = transform._data[2][3]
+        hull_verts = node.callDecoration("getConvexHull")
+
+        offset_verts = hull_verts.getMinkowskiHull(Polygon.approximatedCircle(min_offset))
+        offset_points = copy.deepcopy(offset_verts._points)  # x, y
+        offset_points[:, 0] = numpy.add(offset_points[:, 0], -transform_x)
+        offset_points[:, 1] = numpy.add(offset_points[:, 1], -transform_y)
+        offset_shape_arr = ShapeArray.fromPolygon(offset_points, scale = scale)
+
+        hull_points = copy.deepcopy(hull_verts._points)
+        hull_points[:, 0] = numpy.add(hull_points[:, 0], -transform_x)
+        hull_points[:, 1] = numpy.add(hull_points[:, 1], -transform_y)
+        hull_shape_arr = ShapeArray.fromPolygon(hull_points, scale = scale)  # x, y
+
+        return offset_shape_arr, hull_shape_arr
+
+    ##  Create np.array with dimensions defined by shape
+    #   Fills polygon defined by vertices with ones, all other values zero
+    #   Only works correctly for convex hull vertices
+    #   Originally from: http://stackoverflow.com/questions/37117878/generating-a-filled-polygon-inside-a-numpy-array
+    #   \param shape  numpy format shape, [x-size, y-size]
+    #   \param vertices
+    @classmethod
+    def arrayFromPolygon(cls, shape, vertices):
+        base_array = numpy.zeros(shape, dtype=float)  # Initialize your array of zeros
+
+        fill = numpy.ones(base_array.shape) * True  # Initialize boolean array defining shape fill
+
+        # Create check array for each edge segment, combine into fill array
+        for k in range(vertices.shape[0]):
+            fill = numpy.all([fill, cls._check(vertices[k - 1], vertices[k], base_array)], axis=0)
+
+        # Set all values inside polygon to one
+        base_array[fill] = 1
+
+        return base_array
+
+    ##  Return indices that mark one side of the line, used by arrayFromPolygon
+    #   Uses the line defined by p1 and p2 to check array of
+    #   input indices against interpolated value
+    #   Returns boolean array, with True inside and False outside of shape
+    #   Originally from: http://stackoverflow.com/questions/37117878/generating-a-filled-polygon-inside-a-numpy-array
+    #   \param p1 2-tuple with x, y for point 1
+    #   \param p2 2-tuple with x, y for point 2
+    #   \param base_array boolean array to project the line on
+    @classmethod
+    def _check(cls, p1, p2, base_array):
+        if p1[0] == p2[0] and p1[1] == p2[1]:
+            return
+        idxs = numpy.indices(base_array.shape)  # Create 3D array of indices
+
+        p1 = p1.astype(float)
+        p2 = p2.astype(float)
+
+        if p2[0] == p1[0]:
+            sign = numpy.sign(p2[1] - p1[1])
+            return idxs[1] * sign
+
+        if p2[1] == p1[1]:
+            sign = numpy.sign(p2[0] - p1[0])
+            return idxs[1] * sign
+
+        # Calculate max column idx for each row idx based on interpolated line between two points
+
+        max_col_idx = (idxs[0] - p1[0]) / (p2[0] - p1[0]) * (p2[1] - p1[1]) + p1[1]
+        sign = numpy.sign(p2[0] - p1[0])
+        return idxs[1] * sign <= max_col_idx * sign
+

+ 17 - 0
resources/qml/Actions.qml

@@ -31,6 +31,8 @@ Item
     property alias selectAll: selectAllAction;
     property alias deleteAll: deleteAllAction;
     property alias reloadAll: reloadAllAction;
+    property alias arrangeAll: arrangeAllAction;
+    property alias arrangeSelection: arrangeSelectionAction;
     property alias resetAllTranslation: resetAllTranslationAction;
     property alias resetAll: resetAllAction;
 
@@ -266,6 +268,21 @@ Item
         onTriggered: CuraApplication.reloadAll();
     }
 
+    Action
+    {
+        id: arrangeAllAction;
+        text: catalog.i18nc("@action:inmenu menubar:edit","Arrange All Models");
+        onTriggered: Printer.arrangeAll();
+        shortcut: "Ctrl+R";
+    }
+
+    Action
+    {
+        id: arrangeSelectionAction;
+        text: catalog.i18nc("@action:inmenu menubar:edit","Arrange Selection");
+        onTriggered: Printer.arrangeSelection();
+    }
+
     Action
     {
         id: resetAllTranslationAction;

+ 3 - 0
resources/qml/Cura.qml

@@ -131,6 +131,7 @@ UM.MainWindow
                 MenuItem { action: Cura.Actions.redo; }
                 MenuSeparator { }
                 MenuItem { action: Cura.Actions.selectAll; }
+                MenuItem { action: Cura.Actions.arrangeAll; }
                 MenuItem { action: Cura.Actions.deleteSelection; }
                 MenuItem { action: Cura.Actions.deleteAll; }
                 MenuItem { action: Cura.Actions.resetAllTranslation; }
@@ -603,6 +604,7 @@ UM.MainWindow
         MenuItem { action: Cura.Actions.multiplyObject; }
         MenuSeparator { }
         MenuItem { action: Cura.Actions.selectAll; }
+        MenuItem { action: Cura.Actions.arrangeAll; }
         MenuItem { action: Cura.Actions.deleteAll; }
         MenuItem { action: Cura.Actions.reloadAll; }
         MenuItem { action: Cura.Actions.resetAllTranslation; }
@@ -663,6 +665,7 @@ UM.MainWindow
     {
         id: contextMenu;
         MenuItem { action: Cura.Actions.selectAll; }
+        MenuItem { action: Cura.Actions.arrangeAll; }
         MenuItem { action: Cura.Actions.deleteAll; }
         MenuItem { action: Cura.Actions.reloadAll; }
         MenuItem { action: Cura.Actions.resetAllTranslation; }

+ 148 - 0
tests/TestArrange.py

@@ -0,0 +1,148 @@
+import pytest
+import numpy
+import time
+
+from cura.Arrange import Arrange
+from cura.ShapeArray import ShapeArray
+
+
+def gimmeShapeArray():
+    vertices = numpy.array([[-3, 1], [3, 1], [0, -3]])
+    shape_arr = ShapeArray.fromPolygon(vertices)
+    return shape_arr
+
+
+##  Smoke test for Arrange
+def test_smoke_arrange():
+    ar = Arrange.create(fixed_nodes = [])
+
+
+##  Smoke test for ShapeArray
+def test_smoke_ShapeArray():
+    shape_arr = gimmeShapeArray()
+
+
+##  Test centerFirst
+def test_centerFirst():
+    ar = Arrange(300, 300, 150, 150)
+    ar.centerFirst()
+    assert ar._priority[150][150] < ar._priority[170][150]
+    assert ar._priority[150][150] < ar._priority[150][170]
+    assert ar._priority[150][150] < ar._priority[170][170]
+    assert ar._priority[150][150] < ar._priority[130][150]
+    assert ar._priority[150][150] < ar._priority[150][130]
+    assert ar._priority[150][150] < ar._priority[130][130]
+
+
+##  Test backFirst
+def test_backFirst():
+    ar = Arrange(300, 300, 150, 150)
+    ar.backFirst()
+    assert ar._priority[150][150] < ar._priority[150][170]
+    assert ar._priority[150][150] < ar._priority[170][170]
+    assert ar._priority[150][150] > ar._priority[150][130]
+    assert ar._priority[150][150] > ar._priority[130][130]
+
+
+##  See if the result of bestSpot has the correct form
+def test_smoke_bestSpot():
+    ar = Arrange(30, 30, 15, 15)
+    ar.centerFirst()
+
+    shape_arr = gimmeShapeArray()
+    best_spot = ar.bestSpot(shape_arr)
+    assert hasattr(best_spot, "x")
+    assert hasattr(best_spot, "y")
+    assert hasattr(best_spot, "penalty_points")
+    assert hasattr(best_spot, "priority")
+
+
+##  Try to place an object and see if something explodes
+def test_smoke_place():
+    ar = Arrange(30, 30, 15, 15)
+    ar.centerFirst()
+
+    shape_arr = gimmeShapeArray()
+
+    assert not numpy.any(ar._occupied)
+    ar.place(0, 0, shape_arr)
+    assert numpy.any(ar._occupied)
+
+
+##  See of our center has less penalty points than out of the center
+def test_checkShape():
+    ar = Arrange(30, 30, 15, 15)
+    ar.centerFirst()
+
+    shape_arr = gimmeShapeArray()
+    points = ar.checkShape(0, 0, shape_arr)
+    points2 = ar.checkShape(5, 0, shape_arr)
+    points3 = ar.checkShape(0, 5, shape_arr)
+    assert points2 > points
+    assert points3 > points
+
+
+##  After placing an object on a location that location should give more penalty points
+def test_checkShape_place():
+    ar = Arrange(30, 30, 15, 15)
+    ar.centerFirst()
+
+    shape_arr = gimmeShapeArray()
+    points = ar.checkShape(3, 6, shape_arr)
+    ar.place(3, 6, shape_arr)
+    points2 = ar.checkShape(3, 6, shape_arr)
+
+    assert points2 > points
+
+
+##  Test the whole sequence
+def test_smoke_place_objects():
+    ar = Arrange(20, 20, 10, 10)
+    ar.centerFirst()
+    shape_arr = gimmeShapeArray()
+    print(shape_arr)
+
+    now = time.time()
+    for i in range(5):
+        best_spot_x, best_spot_y, score, prio = ar.bestSpot(shape_arr)
+        print(best_spot_x, best_spot_y, score)
+        ar.place(best_spot_x, best_spot_y, shape_arr)
+        print(ar._occupied)
+
+    print(time.time() - now)
+
+
+##  Polygon -> array
+def test_arrayFromPolygon():
+    vertices = numpy.array([[-3, 1], [3, 1], [0, -3]])
+    array = ShapeArray.arrayFromPolygon([5, 5], vertices)
+    assert numpy.any(array)
+
+
+##  Polygon -> array
+def test_arrayFromPolygon2():
+    vertices = numpy.array([[-3, 1], [3, 1], [2, -3]])
+    array = ShapeArray.arrayFromPolygon([5, 5], vertices)
+    assert numpy.any(array)
+
+
+##  Line definition -> array with true/false
+def test_check():
+    base_array = numpy.zeros([5, 5], dtype=float)
+    p1 = numpy.array([0, 0])
+    p2 = numpy.array([4, 4])
+    check_array = ShapeArray._check(p1, p2, base_array)
+    assert numpy.any(check_array)
+    assert check_array[3][0]
+    assert not check_array[0][3]
+
+
+##  Line definition -> array with true/false
+def test_check2():
+    base_array = numpy.zeros([5, 5], dtype=float)
+    p1 = numpy.array([0, 3])
+    p2 = numpy.array([4, 3])
+    check_array = ShapeArray._check(p1, p2, base_array)
+    assert numpy.any(check_array)
+    assert not check_array[3][0]
+    assert check_array[3][4]