|
@@ -1,108 +1,112 @@
|
|
|
-# Copyright (c) 2018 Ultimaker B.V.
|
|
|
+# Copyright (c) 2015 Ultimaker B.V.
|
|
|
# Cura is released under the terms of the LGPLv3 or higher.
|
|
|
|
|
|
-import sys
|
|
|
-
|
|
|
-from shapely import affinity
|
|
|
-from shapely.geometry import Polygon
|
|
|
-
|
|
|
from UM.Scene.Iterator import Iterator
|
|
|
from UM.Scene.SceneNode import SceneNode
|
|
|
+from functools import cmp_to_key
|
|
|
+from UM.Application import Application
|
|
|
|
|
|
-
|
|
|
-# Iterator that determines the object print order when one-at a time mode is enabled.
|
|
|
-#
|
|
|
-# In one-at-a-time mode, only one extruder can be enabled to print. In order to maximize the number of objects we can
|
|
|
-# print, we need to print from the corner that's closest to the extruder that's being used. Here is an illustration:
|
|
|
-#
|
|
|
-# +--------------------------------+
|
|
|
-# | |
|
|
|
-# | |
|
|
|
-# | | - Rectangle represents the complete print head including fans, etc.
|
|
|
-# | X X | y - X's are the nozzles
|
|
|
-# | (1) (2) | |
|
|
|
-# | | |
|
|
|
-# +--------------------------------+ +--> x
|
|
|
-#
|
|
|
-# In this case, the nozzles are symmetric, nozzle (1) is closer to the bottom left corner while (2) is closer to the
|
|
|
-# bottom right. If we use nozzle (1) to print, then we better off printing from the bottom left corner so the print
|
|
|
-# head will not collide into an object on its top-right side, which is a very large unused area. Following the same
|
|
|
-# logic, if we are printing with nozzle (2), then it's better to print from the bottom-right side.
|
|
|
-#
|
|
|
-# This iterator determines the print order following the rules above.
|
|
|
-#
|
|
|
+## Iterator that returns a list of nodes in the order that they need to be printed
|
|
|
+# If there is no solution an empty list is returned.
|
|
|
+# Take note that the list of nodes can have children (that may or may not contain mesh data)
|
|
|
class OneAtATimeIterator(Iterator.Iterator):
|
|
|
-
|
|
|
def __init__(self, scene_node):
|
|
|
- from cura.CuraApplication import CuraApplication
|
|
|
- self._global_stack = CuraApplication.getInstance().getGlobalContainerStack()
|
|
|
+ super().__init__(scene_node) # Call super to make multiple inheritence work.
|
|
|
+ self._hit_map = [[]]
|
|
|
self._original_node_list = []
|
|
|
- super().__init__(scene_node) # Call super to make multiple inheritance work.
|
|
|
-
|
|
|
- def getMachineNearestCornerToExtruder(self, global_stack):
|
|
|
- head_and_fans_coordinates = global_stack.getHeadAndFansCoordinates()
|
|
|
-
|
|
|
- used_extruder = None
|
|
|
- for extruder in global_stack.extruders.values():
|
|
|
- if extruder.isEnabled:
|
|
|
- used_extruder = extruder
|
|
|
- break
|
|
|
-
|
|
|
- extruder_offsets = [used_extruder.getProperty("machine_nozzle_offset_x", "value"),
|
|
|
- used_extruder.getProperty("machine_nozzle_offset_y", "value")]
|
|
|
-
|
|
|
- # find the corner that's closest to the origin
|
|
|
- min_distance2 = sys.maxsize
|
|
|
- min_coord = None
|
|
|
- for coord in head_and_fans_coordinates:
|
|
|
- x = coord[0] - extruder_offsets[0]
|
|
|
- y = coord[1] - extruder_offsets[1]
|
|
|
-
|
|
|
- distance2 = x**2 + y**2
|
|
|
- if distance2 <= min_distance2:
|
|
|
- min_distance2 = distance2
|
|
|
- min_coord = coord
|
|
|
-
|
|
|
- return min_coord
|
|
|
-
|
|
|
+
|
|
|
def _fillStack(self):
|
|
|
- min_coord = self.getMachineNearestCornerToExtruder(self._global_stack)
|
|
|
- transform_x = -int(round(min_coord[0] / abs(min_coord[0])))
|
|
|
- transform_y = -int(round(min_coord[1] / abs(min_coord[1])))
|
|
|
-
|
|
|
- machine_size = [self._global_stack.getProperty("machine_width", "value"),
|
|
|
- self._global_stack.getProperty("machine_depth", "value")]
|
|
|
-
|
|
|
- def flip_x(polygon):
|
|
|
- tm2 = [-1, 0, 0, 1, 0, 0]
|
|
|
- return affinity.affine_transform(affinity.translate(polygon, xoff = -machine_size[0]), tm2)
|
|
|
-
|
|
|
- def flip_y(polygon):
|
|
|
- tm2 = [1, 0, 0, -1, 0, 0]
|
|
|
- return affinity.affine_transform(affinity.translate(polygon, yoff = -machine_size[1]), tm2)
|
|
|
-
|
|
|
node_list = []
|
|
|
for node in self._scene_node.getChildren():
|
|
|
if not issubclass(type(node), SceneNode):
|
|
|
continue
|
|
|
|
|
|
- convex_hull = node.callDecoration("getConvexHull")
|
|
|
- if convex_hull:
|
|
|
- xmin = min(x for x, _ in convex_hull._points)
|
|
|
- xmax = max(x for x, _ in convex_hull._points)
|
|
|
- ymin = min(y for _, y in convex_hull._points)
|
|
|
- ymax = max(y for _, y in convex_hull._points)
|
|
|
-
|
|
|
- convex_hull_polygon = Polygon.from_bounds(xmin, ymin, xmax, ymax)
|
|
|
- if transform_x < 0:
|
|
|
- convex_hull_polygon = flip_x(convex_hull_polygon)
|
|
|
- if transform_y < 0:
|
|
|
- convex_hull_polygon = flip_y(convex_hull_polygon)
|
|
|
-
|
|
|
- node_list.append({"node": node,
|
|
|
- "min_coord": [convex_hull_polygon.bounds[0], convex_hull_polygon.bounds[1]],
|
|
|
- })
|
|
|
-
|
|
|
- node_list = sorted(node_list, key = lambda d: d["min_coord"])
|
|
|
+ if node.callDecoration("getConvexHull"):
|
|
|
+ node_list.append(node)
|
|
|
+
|
|
|
+
|
|
|
+ if len(node_list) < 2:
|
|
|
+ self._node_stack = node_list[:]
|
|
|
+ return
|
|
|
+
|
|
|
+ # Copy the list
|
|
|
+ self._original_node_list = node_list[:]
|
|
|
+
|
|
|
+ ## Initialise the hit map (pre-compute all hits between all objects)
|
|
|
+ self._hit_map = [[self._checkHit(i,j) for i in node_list] for j in node_list]
|
|
|
+
|
|
|
+ # Check if we have to files that block eachother. If this is the case, there is no solution!
|
|
|
+ for a in range(0,len(node_list)):
|
|
|
+ for b in range(0,len(node_list)):
|
|
|
+ if a != b and self._hit_map[a][b] and self._hit_map[b][a]:
|
|
|
+ return
|
|
|
+
|
|
|
+ # Sort the original list so that items that block the most other objects are at the beginning.
|
|
|
+ # This does not decrease the worst case running time, but should improve it in most cases.
|
|
|
+ sorted(node_list, key = cmp_to_key(self._calculateScore))
|
|
|
+
|
|
|
+ todo_node_list = [_ObjectOrder([], node_list)]
|
|
|
+ while len(todo_node_list) > 0:
|
|
|
+ current = todo_node_list.pop()
|
|
|
+ for node in current.todo:
|
|
|
+ # Check if the object can be placed with what we have and still allows for a solution in the future
|
|
|
+ if not self._checkHitMultiple(node, current.order) and not self._checkBlockMultiple(node, current.todo):
|
|
|
+ # We found a possible result. Create new todo & order list.
|
|
|
+ new_todo_list = current.todo[:]
|
|
|
+ new_todo_list.remove(node)
|
|
|
+ new_order = current.order[:] + [node]
|
|
|
+ if len(new_todo_list) == 0:
|
|
|
+ # We have no more nodes to check, so quit looking.
|
|
|
+ todo_node_list = None
|
|
|
+ self._node_stack = new_order
|
|
|
+
|
|
|
+ return
|
|
|
+ todo_node_list.append(_ObjectOrder(new_order, new_todo_list))
|
|
|
+ self._node_stack = [] #No result found!
|
|
|
+
|
|
|
+
|
|
|
+ # Check if first object can be printed before the provided list (using the hit map)
|
|
|
+ def _checkHitMultiple(self, node, other_nodes):
|
|
|
+ node_index = self._original_node_list.index(node)
|
|
|
+ for other_node in other_nodes:
|
|
|
+ other_node_index = self._original_node_list.index(other_node)
|
|
|
+ if self._hit_map[node_index][other_node_index]:
|
|
|
+ return True
|
|
|
+ return False
|
|
|
+
|
|
|
+ def _checkBlockMultiple(self, node, other_nodes):
|
|
|
+ node_index = self._original_node_list.index(node)
|
|
|
+ for other_node in other_nodes:
|
|
|
+ other_node_index = self._original_node_list.index(other_node)
|
|
|
+ if self._hit_map[other_node_index][node_index] and node_index != other_node_index:
|
|
|
+ return True
|
|
|
+ return False
|
|
|
+
|
|
|
+ ## Calculate score simply sums the number of other objects it 'blocks'
|
|
|
+ def _calculateScore(self, a, b):
|
|
|
+ score_a = sum(self._hit_map[self._original_node_list.index(a)])
|
|
|
+ score_b = sum(self._hit_map[self._original_node_list.index(b)])
|
|
|
+ return score_a - score_b
|
|
|
+
|
|
|
+ # Checks if A can be printed before B
|
|
|
+ def _checkHit(self, a, b):
|
|
|
+ if a == b:
|
|
|
+ return False
|
|
|
+
|
|
|
+ overlap = a.callDecoration("getConvexHullBoundary").intersectsPolygon(b.callDecoration("getConvexHullHeadFull"))
|
|
|
+ if overlap:
|
|
|
+ return True
|
|
|
+ else:
|
|
|
+ return False
|
|
|
+
|
|
|
+
|
|
|
+## Internal object used to keep track of a possible order in which to print objects.
|
|
|
+class _ObjectOrder():
|
|
|
+ def __init__(self, order, todo):
|
|
|
+ """
|
|
|
+ :param order: List of indexes in which to print objects, ordered by printing order.
|
|
|
+ :param todo: List of indexes which are not yet inserted into the order list.
|
|
|
+ """
|
|
|
+ self.order = order
|
|
|
+ self.todo = todo
|
|
|
|
|
|
- self._node_stack = [d["node"] for d in node_list]
|