|
@@ -1,112 +1,147 @@
|
|
|
-# Copyright (c) 2015 Ultimaker B.V.
|
|
|
+# Copyright (c) 2018 Ultimaker B.V.
|
|
|
# Cura is released under the terms of the LGPLv3 or higher.
|
|
|
|
|
|
-from UM.Scene.Iterator import Iterator
|
|
|
+import sys
|
|
|
+
|
|
|
+from shapely import affinity
|
|
|
+from shapely.geometry import Polygon
|
|
|
+
|
|
|
+from UM.Scene.Iterator.Iterator import Iterator
|
|
|
from UM.Scene.SceneNode import SceneNode
|
|
|
-from functools import cmp_to_key
|
|
|
-from UM.Application import Application
|
|
|
|
|
|
-## Iterator that returns a list of nodes in the order that they need to be printed
|
|
|
-# If there is no solution an empty list is returned.
|
|
|
-# Take note that the list of nodes can have children (that may or may not contain mesh data)
|
|
|
-class OneAtATimeIterator(Iterator.Iterator):
|
|
|
+
|
|
|
+# Iterator that determines the object print order when one-at a time mode is enabled.
|
|
|
+#
|
|
|
+# In one-at-a-time mode, only one extruder can be enabled to print. In order to maximize the number of objects we can
|
|
|
+# print, we need to print from the corner that's closest to the extruder that's being used. Here is an illustration:
|
|
|
+#
|
|
|
+# +--------------------------------+
|
|
|
+# | |
|
|
|
+# | |
|
|
|
+# | | - Rectangle represents the complete print head including fans, etc.
|
|
|
+# | X X | y - X's are the nozzles
|
|
|
+# | (1) (2) | ^
|
|
|
+# | | |
|
|
|
+# +--------------------------------+ +--> x
|
|
|
+#
|
|
|
+# In this case, the nozzles are symmetric, nozzle (1) is closer to the bottom left corner while (2) is closer to the
|
|
|
+# bottom right. If we use nozzle (1) to print, then we better off printing from the bottom left corner so the print
|
|
|
+# head will not collide into an object on its top-right side, which is a very large unused area. Following the same
|
|
|
+# logic, if we are printing with nozzle (2), then it's better to print from the bottom-right side.
|
|
|
+#
|
|
|
+# This iterator determines the print order following the rules above.
|
|
|
+#
|
|
|
+class OneAtATimeIterator(Iterator):
|
|
|
+
|
|
|
def __init__(self, scene_node):
|
|
|
- super().__init__(scene_node) # Call super to make multiple inheritence work.
|
|
|
- self._hit_map = [[]]
|
|
|
+ from cura.CuraApplication import CuraApplication
|
|
|
+ self._global_stack = CuraApplication.getInstance().getGlobalContainerStack()
|
|
|
self._original_node_list = []
|
|
|
-
|
|
|
+
|
|
|
+ super().__init__(scene_node) # Call super to make multiple inheritance work.
|
|
|
+
|
|
|
+ def getMachineNearestCornerToExtruder(self, global_stack):
|
|
|
+ head_and_fans_coordinates = global_stack.getHeadAndFansCoordinates()
|
|
|
+
|
|
|
+ used_extruder = None
|
|
|
+ for extruder in global_stack.extruders.values():
|
|
|
+ if extruder.isEnabled:
|
|
|
+ used_extruder = extruder
|
|
|
+ break
|
|
|
+
|
|
|
+ extruder_offsets = [used_extruder.getProperty("machine_nozzle_offset_x", "value"),
|
|
|
+ used_extruder.getProperty("machine_nozzle_offset_y", "value")]
|
|
|
+
|
|
|
+ # find the corner that's closest to the origin
|
|
|
+ min_distance2 = sys.maxsize
|
|
|
+ min_coord = None
|
|
|
+ for coord in head_and_fans_coordinates:
|
|
|
+ x = coord[0] - extruder_offsets[0]
|
|
|
+ y = coord[1] - extruder_offsets[1]
|
|
|
+
|
|
|
+ distance2 = x**2 + y**2
|
|
|
+ if distance2 <= min_distance2:
|
|
|
+ min_distance2 = distance2
|
|
|
+ min_coord = coord
|
|
|
+
|
|
|
+ return min_coord
|
|
|
+
|
|
|
+ def _checkForCollisions(self) -> bool:
|
|
|
+ all_nodes = []
|
|
|
+ for node in self._scene_node.getChildren():
|
|
|
+ if not issubclass(type(node), SceneNode):
|
|
|
+ continue
|
|
|
+ convex_hull = node.callDecoration("getConvexHullHead")
|
|
|
+ if not convex_hull:
|
|
|
+ continue
|
|
|
+
|
|
|
+ bounding_box = node.getBoundingBox()
|
|
|
+ from UM.Math.Polygon import Polygon
|
|
|
+ bounding_box_polygon = Polygon([[bounding_box.left, bounding_box.front],
|
|
|
+ [bounding_box.left, bounding_box.back],
|
|
|
+ [bounding_box.right, bounding_box.back],
|
|
|
+ [bounding_box.right, bounding_box.front]])
|
|
|
+
|
|
|
+ all_nodes.append({"node": node,
|
|
|
+ "bounding_box": bounding_box_polygon,
|
|
|
+ "convex_hull": convex_hull})
|
|
|
+
|
|
|
+ has_collisions = False
|
|
|
+ for i, node_dict in enumerate(all_nodes):
|
|
|
+ for j, other_node_dict in enumerate(all_nodes):
|
|
|
+ if i == j:
|
|
|
+ continue
|
|
|
+ if node_dict["bounding_box"].intersectsPolygon(other_node_dict["convex_hull"]):
|
|
|
+ has_collisions = True
|
|
|
+ break
|
|
|
+
|
|
|
+ if has_collisions:
|
|
|
+ break
|
|
|
+
|
|
|
+ return has_collisions
|
|
|
+
|
|
|
def _fillStack(self):
|
|
|
+ min_coord = self.getMachineNearestCornerToExtruder(self._global_stack)
|
|
|
+ transform_x = -int(round(min_coord[0] / abs(min_coord[0])))
|
|
|
+ transform_y = -int(round(min_coord[1] / abs(min_coord[1])))
|
|
|
+
|
|
|
+ machine_size = [self._global_stack.getProperty("machine_width", "value"),
|
|
|
+ self._global_stack.getProperty("machine_depth", "value")]
|
|
|
+
|
|
|
+ def flip_x(polygon):
|
|
|
+ tm2 = [-1, 0, 0, 1, 0, 0]
|
|
|
+ return affinity.affine_transform(affinity.translate(polygon, xoff = -machine_size[0]), tm2)
|
|
|
+
|
|
|
+ def flip_y(polygon):
|
|
|
+ tm2 = [1, 0, 0, -1, 0, 0]
|
|
|
+ return affinity.affine_transform(affinity.translate(polygon, yoff = -machine_size[1]), tm2)
|
|
|
+
|
|
|
+ if self._checkForCollisions():
|
|
|
+ self._node_stack = []
|
|
|
+ return
|
|
|
+
|
|
|
node_list = []
|
|
|
for node in self._scene_node.getChildren():
|
|
|
if not issubclass(type(node), SceneNode):
|
|
|
continue
|
|
|
|
|
|
- if node.callDecoration("getConvexHull"):
|
|
|
- node_list.append(node)
|
|
|
-
|
|
|
-
|
|
|
- if len(node_list) < 2:
|
|
|
- self._node_stack = node_list[:]
|
|
|
- return
|
|
|
-
|
|
|
- # Copy the list
|
|
|
- self._original_node_list = node_list[:]
|
|
|
-
|
|
|
- ## Initialise the hit map (pre-compute all hits between all objects)
|
|
|
- self._hit_map = [[self._checkHit(i,j) for i in node_list] for j in node_list]
|
|
|
-
|
|
|
- # Check if we have to files that block eachother. If this is the case, there is no solution!
|
|
|
- for a in range(0,len(node_list)):
|
|
|
- for b in range(0,len(node_list)):
|
|
|
- if a != b and self._hit_map[a][b] and self._hit_map[b][a]:
|
|
|
- return
|
|
|
-
|
|
|
- # Sort the original list so that items that block the most other objects are at the beginning.
|
|
|
- # This does not decrease the worst case running time, but should improve it in most cases.
|
|
|
- sorted(node_list, key = cmp_to_key(self._calculateScore))
|
|
|
-
|
|
|
- todo_node_list = [_ObjectOrder([], node_list)]
|
|
|
- while len(todo_node_list) > 0:
|
|
|
- current = todo_node_list.pop()
|
|
|
- for node in current.todo:
|
|
|
- # Check if the object can be placed with what we have and still allows for a solution in the future
|
|
|
- if not self._checkHitMultiple(node, current.order) and not self._checkBlockMultiple(node, current.todo):
|
|
|
- # We found a possible result. Create new todo & order list.
|
|
|
- new_todo_list = current.todo[:]
|
|
|
- new_todo_list.remove(node)
|
|
|
- new_order = current.order[:] + [node]
|
|
|
- if len(new_todo_list) == 0:
|
|
|
- # We have no more nodes to check, so quit looking.
|
|
|
- todo_node_list = None
|
|
|
- self._node_stack = new_order
|
|
|
-
|
|
|
- return
|
|
|
- todo_node_list.append(_ObjectOrder(new_order, new_todo_list))
|
|
|
- self._node_stack = [] #No result found!
|
|
|
-
|
|
|
-
|
|
|
- # Check if first object can be printed before the provided list (using the hit map)
|
|
|
- def _checkHitMultiple(self, node, other_nodes):
|
|
|
- node_index = self._original_node_list.index(node)
|
|
|
- for other_node in other_nodes:
|
|
|
- other_node_index = self._original_node_list.index(other_node)
|
|
|
- if self._hit_map[node_index][other_node_index]:
|
|
|
- return True
|
|
|
- return False
|
|
|
-
|
|
|
- def _checkBlockMultiple(self, node, other_nodes):
|
|
|
- node_index = self._original_node_list.index(node)
|
|
|
- for other_node in other_nodes:
|
|
|
- other_node_index = self._original_node_list.index(other_node)
|
|
|
- if self._hit_map[other_node_index][node_index] and node_index != other_node_index:
|
|
|
- return True
|
|
|
- return False
|
|
|
-
|
|
|
- ## Calculate score simply sums the number of other objects it 'blocks'
|
|
|
- def _calculateScore(self, a, b):
|
|
|
- score_a = sum(self._hit_map[self._original_node_list.index(a)])
|
|
|
- score_b = sum(self._hit_map[self._original_node_list.index(b)])
|
|
|
- return score_a - score_b
|
|
|
-
|
|
|
- # Checks if A can be printed before B
|
|
|
- def _checkHit(self, a, b):
|
|
|
- if a == b:
|
|
|
- return False
|
|
|
-
|
|
|
- overlap = a.callDecoration("getConvexHullBoundary").intersectsPolygon(b.callDecoration("getConvexHullHeadFull"))
|
|
|
- if overlap:
|
|
|
- return True
|
|
|
- else:
|
|
|
- return False
|
|
|
-
|
|
|
-
|
|
|
-## Internal object used to keep track of a possible order in which to print objects.
|
|
|
-class _ObjectOrder():
|
|
|
- def __init__(self, order, todo):
|
|
|
- """
|
|
|
- :param order: List of indexes in which to print objects, ordered by printing order.
|
|
|
- :param todo: List of indexes which are not yet inserted into the order list.
|
|
|
- """
|
|
|
- self.order = order
|
|
|
- self.todo = todo
|
|
|
+ convex_hull = node.callDecoration("getConvexHull")
|
|
|
+ if convex_hull:
|
|
|
+ xmin = min(x for x, _ in convex_hull._points)
|
|
|
+ xmax = max(x for x, _ in convex_hull._points)
|
|
|
+ ymin = min(y for _, y in convex_hull._points)
|
|
|
+ ymax = max(y for _, y in convex_hull._points)
|
|
|
+
|
|
|
+ convex_hull_polygon = Polygon.from_bounds(xmin, ymin, xmax, ymax)
|
|
|
+ if transform_x < 0:
|
|
|
+ convex_hull_polygon = flip_x(convex_hull_polygon)
|
|
|
+ if transform_y < 0:
|
|
|
+ convex_hull_polygon = flip_y(convex_hull_polygon)
|
|
|
+
|
|
|
+ node_list.append({"node": node,
|
|
|
+ "min_coord": [convex_hull_polygon.bounds[0], convex_hull_polygon.bounds[1]],
|
|
|
+ })
|
|
|
+
|
|
|
+ node_list = sorted(node_list, key = lambda d: d["min_coord"])
|
|
|
|
|
|
+ self._node_stack = [d["node"] for d in node_list]
|