|
@@ -1,3 +1,6 @@
|
|
|
+# Copyright (c) 2018 Ultimaker B.V.
|
|
|
+# Cura is released under the terms of the LGPLv3 or higher.
|
|
|
+
|
|
|
from UM.Scene.Iterator.DepthFirstIterator import DepthFirstIterator
|
|
|
from UM.Logger import Logger
|
|
|
from UM.Math.Vector import Vector
|
|
@@ -18,17 +21,20 @@ LocationSuggestion = namedtuple("LocationSuggestion", ["x", "y", "penalty_points
|
|
|
# good locations for objects that you try to put on a build place.
|
|
|
# Different priority schemes can be defined so it alters the behavior while using
|
|
|
# the same logic.
|
|
|
+#
|
|
|
+# Note: Make sure the scale is the same between ShapeArray objects and the Arrange instance.
|
|
|
class Arrange:
|
|
|
build_volume = None
|
|
|
|
|
|
- def __init__(self, x, y, offset_x, offset_y, scale= 1.0):
|
|
|
- self.shape = (y, x)
|
|
|
- self._priority = numpy.zeros((x, y), dtype=numpy.int32)
|
|
|
- self._priority_unique_values = []
|
|
|
- self._occupied = numpy.zeros((x, y), dtype=numpy.int32)
|
|
|
+ def __init__(self, x, y, offset_x, offset_y, scale= 0.5):
|
|
|
self._scale = scale # convert input coordinates to arrange coordinates
|
|
|
- self._offset_x = offset_x
|
|
|
- self._offset_y = offset_y
|
|
|
+ world_x, world_y = int(x * self._scale), int(y * self._scale)
|
|
|
+ self._shape = (world_y, world_x)
|
|
|
+ self._priority = numpy.zeros((world_y, world_x), dtype=numpy.int32) # beware: these are indexed (y, x)
|
|
|
+ self._priority_unique_values = []
|
|
|
+ self._occupied = numpy.zeros((world_y, world_x), dtype=numpy.int32) # beware: these are indexed (y, x)
|
|
|
+ self._offset_x = int(offset_x * self._scale)
|
|
|
+ self._offset_y = int(offset_y * self._scale)
|
|
|
self._last_priority = 0
|
|
|
self._is_empty = True
|
|
|
|
|
@@ -39,7 +45,7 @@ class Arrange:
|
|
|
# \param scene_root Root for finding all scene nodes
|
|
|
# \param fixed_nodes Scene nodes to be placed
|
|
|
@classmethod
|
|
|
- def create(cls, scene_root = None, fixed_nodes = None, scale = 0.5, x = 220, y = 220):
|
|
|
+ def create(cls, scene_root = None, fixed_nodes = None, scale = 0.5, x = 350, y = 250):
|
|
|
arranger = Arrange(x, y, x // 2, y // 2, scale = scale)
|
|
|
arranger.centerFirst()
|
|
|
|
|
@@ -61,13 +67,17 @@ class Arrange:
|
|
|
|
|
|
# If a build volume was set, add the disallowed areas
|
|
|
if Arrange.build_volume:
|
|
|
- disallowed_areas = Arrange.build_volume.getDisallowedAreas()
|
|
|
+ disallowed_areas = Arrange.build_volume.getDisallowedAreasNoBrim()
|
|
|
for area in disallowed_areas:
|
|
|
points = copy.deepcopy(area._points)
|
|
|
shape_arr = ShapeArray.fromPolygon(points, scale = scale)
|
|
|
arranger.place(0, 0, shape_arr, update_empty = False)
|
|
|
return arranger
|
|
|
|
|
|
+ ## This resets the optimization for finding location based on size
|
|
|
+ def resetLastPriority(self):
|
|
|
+ self._last_priority = 0
|
|
|
+
|
|
|
## Find placement for a node (using offset shape) and place it (using hull shape)
|
|
|
# return the nodes that should be placed
|
|
|
# \param node
|
|
@@ -104,7 +114,7 @@ class Arrange:
|
|
|
def centerFirst(self):
|
|
|
# Square distance: creates a more round shape
|
|
|
self._priority = numpy.fromfunction(
|
|
|
- lambda i, j: (self._offset_x - i) ** 2 + (self._offset_y - j) ** 2, self.shape, dtype=numpy.int32)
|
|
|
+ lambda j, i: (self._offset_x - i) ** 2 + (self._offset_y - j) ** 2, self._shape, dtype=numpy.int32)
|
|
|
self._priority_unique_values = numpy.unique(self._priority)
|
|
|
self._priority_unique_values.sort()
|
|
|
|
|
@@ -112,7 +122,7 @@ class Arrange:
|
|
|
# This is a strategy for the arranger.
|
|
|
def backFirst(self):
|
|
|
self._priority = numpy.fromfunction(
|
|
|
- lambda i, j: 10 * j + abs(self._offset_x - i), self.shape, dtype=numpy.int32)
|
|
|
+ lambda j, i: 10 * j + abs(self._offset_x - i), self._shape, dtype=numpy.int32)
|
|
|
self._priority_unique_values = numpy.unique(self._priority)
|
|
|
self._priority_unique_values.sort()
|
|
|
|
|
@@ -126,9 +136,15 @@ class Arrange:
|
|
|
y = int(self._scale * y)
|
|
|
offset_x = x + self._offset_x + shape_arr.offset_x
|
|
|
offset_y = y + self._offset_y + shape_arr.offset_y
|
|
|
+ if offset_x < 0 or offset_y < 0:
|
|
|
+ return None # out of bounds in self._occupied
|
|
|
+ occupied_x_max = offset_x + shape_arr.arr.shape[1]
|
|
|
+ occupied_y_max = offset_y + shape_arr.arr.shape[0]
|
|
|
+ if occupied_x_max > self._occupied.shape[1] + 1 or occupied_y_max > self._occupied.shape[0] + 1:
|
|
|
+ return None # out of bounds in self._occupied
|
|
|
occupied_slice = self._occupied[
|
|
|
- offset_y:offset_y + shape_arr.arr.shape[0],
|
|
|
- offset_x:offset_x + shape_arr.arr.shape[1]]
|
|
|
+ offset_y:occupied_y_max,
|
|
|
+ offset_x:occupied_x_max]
|
|
|
try:
|
|
|
if numpy.any(occupied_slice[numpy.where(shape_arr.arr == 1)]):
|
|
|
return None
|
|
@@ -140,7 +156,7 @@ class Arrange:
|
|
|
return numpy.sum(prio_slice[numpy.where(shape_arr.arr == 1)])
|
|
|
|
|
|
## Find "best" spot for ShapeArray
|
|
|
- # Return namedtuple with properties x, y, penalty_points, priority
|
|
|
+ # Return namedtuple with properties x, y, penalty_points, priority.
|
|
|
# \param shape_arr ShapeArray
|
|
|
# \param start_prio Start with this priority value (and skip the ones before)
|
|
|
# \param step Slicing value, higher = more skips = faster but less accurate
|
|
@@ -153,12 +169,11 @@ class Arrange:
|
|
|
for priority in self._priority_unique_values[start_idx::step]:
|
|
|
tryout_idx = numpy.where(self._priority == priority)
|
|
|
for idx in range(len(tryout_idx[0])):
|
|
|
- x = tryout_idx[0][idx]
|
|
|
- y = tryout_idx[1][idx]
|
|
|
- projected_x = x - self._offset_x
|
|
|
- projected_y = y - self._offset_y
|
|
|
+ x = tryout_idx[1][idx]
|
|
|
+ y = tryout_idx[0][idx]
|
|
|
+ projected_x = int((x - self._offset_x) / self._scale)
|
|
|
+ projected_y = int((y - self._offset_y) / self._scale)
|
|
|
|
|
|
- # array to "world" coordinates
|
|
|
penalty_points = self.checkShape(projected_x, projected_y, shape_arr)
|
|
|
if penalty_points is not None:
|
|
|
return LocationSuggestion(x = projected_x, y = projected_y, penalty_points = penalty_points, priority = priority)
|
|
@@ -191,8 +206,12 @@ class Arrange:
|
|
|
|
|
|
# Set priority to low (= high number), so it won't get picked at trying out.
|
|
|
prio_slice = self._priority[min_y:max_y, min_x:max_x]
|
|
|
- prio_slice[numpy.where(shape_arr.arr[
|
|
|
- min_y - offset_y:max_y - offset_y, min_x - offset_x:max_x - offset_x] == 1)] = 999
|
|
|
+ prio_slice[new_occupied] = 999
|
|
|
+
|
|
|
+ # If you want to see how the rasterized arranger build plate looks like, uncomment this code
|
|
|
+ # numpy.set_printoptions(linewidth=500, edgeitems=200)
|
|
|
+ # print(self._occupied.shape)
|
|
|
+ # print(self._occupied)
|
|
|
|
|
|
@property
|
|
|
def isEmpty(self):
|