|
@@ -17,11 +17,16 @@ from UM.Scene.Iterator.DepthFirstIterator import DepthFirstIterator
|
|
|
|
|
|
|
|
|
class Snapshot:
|
|
|
+ ## Return a QImage of the scene
|
|
|
+ # Uses PreviewPass that leaves out some elements
|
|
|
+ # Aspect ratio assumes a square
|
|
|
@staticmethod
|
|
|
def snapshot(width = 300, height = 300):
|
|
|
scene = Application.getInstance().getController().getScene()
|
|
|
active_camera = scene.getActiveCamera()
|
|
|
render_width, render_height = active_camera.getWindowSize()
|
|
|
+ render_width = int(render_width)
|
|
|
+ render_height = int(render_height)
|
|
|
preview_pass = PreviewPass(render_width, render_height)
|
|
|
|
|
|
root = scene.getRoot()
|
|
@@ -29,7 +34,6 @@ class Snapshot:
|
|
|
|
|
|
# determine zoom and look at
|
|
|
bbox = None
|
|
|
- hulls = None
|
|
|
for node in DepthFirstIterator(root):
|
|
|
if type(node) == ConvexHullNode:
|
|
|
print(node)
|
|
@@ -38,16 +42,12 @@ class Snapshot:
|
|
|
bbox = node.getBoundingBox()
|
|
|
else:
|
|
|
bbox = bbox + node.getBoundingBox()
|
|
|
- convex_hull = node.getMeshData().getConvexHullTransformedVertices(node.getWorldTransformation())
|
|
|
- if hulls is None:
|
|
|
- hulls = convex_hull
|
|
|
- else:
|
|
|
- hulls = numpy.concatenate((hulls, convex_hull), axis = 0)
|
|
|
|
|
|
if bbox is None:
|
|
|
bbox = AxisAlignedBox()
|
|
|
|
|
|
look_at = bbox.center
|
|
|
+ # guessed size so the objects are hopefully big
|
|
|
size = max(bbox.width, bbox.height, bbox.depth * 0.5)
|
|
|
|
|
|
# Somehow the aspect ratio is also influenced in reverse by the screen width/height
|
|
@@ -56,56 +56,27 @@ class Snapshot:
|
|
|
projection_matrix.setPerspective(30, render_width / render_height, 1, 500)
|
|
|
camera.setProjectionMatrix(projection_matrix)
|
|
|
|
|
|
+ # Looking from this direction (x, y, z) in OGL coordinates
|
|
|
looking_from_offset = Vector(1, 1, 2)
|
|
|
if size > 0:
|
|
|
# determine the watch distance depending on the size
|
|
|
looking_from_offset = looking_from_offset * size * 1.3
|
|
|
- camera.setViewportSize(render_width, render_height)
|
|
|
- camera.setWindowSize(render_width, render_height)
|
|
|
camera.setPosition(look_at + looking_from_offset)
|
|
|
camera.lookAt(look_at)
|
|
|
|
|
|
- # we need this for the projection calculation
|
|
|
- hulls4 = numpy.ones((hulls.shape[0], 4))
|
|
|
- hulls4[:, :-1] = hulls
|
|
|
- #position = Vector(10, 10, 10)
|
|
|
- # projected_position = camera.project(position)
|
|
|
-
|
|
|
preview_pass.setCamera(camera)
|
|
|
- preview_pass.setSize(render_width, render_height) # texture size
|
|
|
preview_pass.render()
|
|
|
pixel_output = preview_pass.getOutput()
|
|
|
|
|
|
- print("Calculating image coordinates...")
|
|
|
- view = camera.getWorldTransformation().getInverse()
|
|
|
- min_x, max_x, min_y, max_y = render_width, 0, render_height, 0
|
|
|
- for hull_coords in hulls4:
|
|
|
- projected_position = view.getData().dot(hull_coords)
|
|
|
- projected_position2 = projection_matrix.getData().dot(projected_position)
|
|
|
- #xx, yy = camera.project(Vector(data = hull_coords))
|
|
|
- # xx, yy range from -1 to 1
|
|
|
- xx = projected_position2[0] / projected_position2[2] / 2.0
|
|
|
- yy = projected_position2[1] / projected_position2[2] / 2.0
|
|
|
- # x, y 0..render_width/height
|
|
|
- x = int(render_width / 2 + xx * render_width / 2)
|
|
|
- y = int(render_height / 2 + yy * render_height / 2)
|
|
|
- min_x = min(x, min_x)
|
|
|
- max_x = max(x, max_x)
|
|
|
- min_y = min(y, min_y)
|
|
|
- max_y = max(y, max_y)
|
|
|
- print(min_x, max_x, min_y, max_y)
|
|
|
-
|
|
|
- # print("looping all pixels in python...")
|
|
|
- # min_x_, max_x_, min_y_, max_y_ = render_width, 0, render_height, 0
|
|
|
- # for y in range(int(render_height)):
|
|
|
- # for x in range(int(render_width)):
|
|
|
- # color = pixel_output.pixelColor(x, y)
|
|
|
- # if color.alpha() > 0:
|
|
|
- # min_x_ = min(x, min_x_)
|
|
|
- # max_x_ = max(x, max_x_)
|
|
|
- # min_y_ = min(y, min_y_)
|
|
|
- # max_y_ = max(y, max_y_)
|
|
|
- # print(min_x_, max_x_, min_y_, max_y_)
|
|
|
+ # Look at the resulting image to get a good crop.
|
|
|
+ # Get the pixels as byte array
|
|
|
+ pixel_array = pixel_output.bits().asarray(pixel_output.byteCount())
|
|
|
+ # Convert to numpy array, assume it's 32 bit (it should always be)
|
|
|
+ pixels = numpy.frombuffer(pixel_array, dtype=numpy.uint8).reshape([render_height, render_width, 4])
|
|
|
+ # Find indices of non zero pixels
|
|
|
+ nonzero_pixels = numpy.nonzero(pixels)
|
|
|
+ min_y, min_x, min_a_ = numpy.amin(nonzero_pixels, axis=1)
|
|
|
+ max_y, max_x, max_a_ = numpy.amax(nonzero_pixels, axis=1)
|
|
|
|
|
|
# make it a square
|
|
|
if max_x - min_x >= max_y - min_y:
|
|
@@ -114,11 +85,12 @@ class Snapshot:
|
|
|
else:
|
|
|
# make x bigger
|
|
|
min_x, max_x = int((max_x + min_x) / 2 - (max_y - min_y) / 2), int((max_x + min_x) / 2 + (max_y - min_y) / 2)
|
|
|
- copy_pixel_output = pixel_output.copy(min_x, min_y, max_x - min_x, max_y - min_y)
|
|
|
+ cropped_image = pixel_output.copy(min_x, min_y, max_x - min_x, max_y - min_y)
|
|
|
|
|
|
- # Scale it to the correct height
|
|
|
- image = copy_pixel_output.scaledToHeight(height, QtCore.Qt.SmoothTransformation)
|
|
|
- # Then chop of the width
|
|
|
- cropped_image = image.copy(image.width() // 2 - width // 2, 0, width, height)
|
|
|
+ # Scale it to the correct size
|
|
|
+ scaled_image = cropped_image.scaled(
|
|
|
+ width, height,
|
|
|
+ aspectRatioMode = QtCore.Qt.IgnoreAspectRatio,
|
|
|
+ transformMode = QtCore.Qt.SmoothTransformation)
|
|
|
|
|
|
- return cropped_image
|
|
|
+ return scaled_image
|